剑指offer:递归(回溯)

文章介绍了全排列的实现方法,包括无重复项和有重复项的情况,使用了递归策略,并提供了字符串和数组的解决方案。同时,详细阐述了深度优先搜索(DFS)和广度优先搜索(BFS)在求解岛屿数量问题上的应用,以及括号生成问题的递归解法。
摘要由CSDN通过智能技术生成

BM55 没有重复项数字的全排列
题目
题解(98)
讨论(161)
排行
面经new
中等 通过率:56.95% 时间限制:1秒 空间限制:256M
知识点
递归
描述
给出一组数字,返回该组数字的所有排列
例如:
[1,2,3]的所有排列如下
[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2], [3,2,1].
(以数字在数组中的位置靠前为优先级,按字典序排列输出。)

数据范围:数字个数 0 < n \le 60<n≤6
要求:空间复杂度 O(n!)O(n!) ,时间复杂度 O(n!)O(n!)
示例1
输入:
[1,2,3]
复制
返回值:
[[1,2,3],[1,3,2],[2,1,3],[2,3,1],[3,1,2],[3,2,1]]
复制
示例2
输入:
[1]
复制
返回值:
[[1]]
复制

class Solution {
public:
    void recursion(vector<vector<int> > &res, vector<int> &num, int index){
        if (index == num.size() - 1) {
            res.push_back(num);
            return;
        }
        for(int i = index; i < num.size(); i++) { 
            swap(num[index], num[i]);
            recursion(res, num, index + 1); 
            swap(num[index], num[i]);
        }
    }
    vector<vector<int> > permute(vector<int> &num) {
        //先按字典序排序
        sort(num.begin(), num.end()); 
        vector<vector<int> > res;
        recursion(res, num, 0); 
        return res;
    }
};

BM56 有重复项数字的全排列(这个题目是数组,和下一个题目字符串是相同的方法)

题目
题解(92)
讨论(158)
排行
面经new
中等 通过率:39.45% 时间限制:1秒 空间限制:256M
知识点
递归
描述
给出一组可能包含重复项的数字,返回该组数字的所有排列。结果以字典序升序排列。

数据范围: 0 < n \le 80<n≤8 ,数组中的值满足 -1 \le val \le 5−1≤val≤5
要求:空间复杂度 O(n!)O(n!),时间复杂度 O(n!)O(n!)
示例1
输入:
[1,1,2]
复制
返回值:
[[1,1,2],[1,2,1],[2,1,1]]
复制
示例2
输入:
[0,1]
复制
返回值:
[[0,1],[1,0]]
复制

class Solution {
public:
    void recursion(vector<int> &num, vector<int> &used){
        //临时字符串满足条件放入字符串数组
        if(temp.size() == num.size()) {
            res.push_back(temp);
            return;
        }

        //遍历所有元素,选取一个元素加入临时字符串temp
        for(int i = 0; i < num.size(); ++i) {
            //如果该元素已经被加入临时字符串temp,继续遍历
            if(used[i] == 1) {
                continue;
            }

            //当前的元素num[i]和前一个元素num[i-1]相同,
            //并且前一个元素num[i-1]已经用过,
            //继续遍历
            if(i > 0 && num[i-1] == num[i] && 1 == used[i-1]) {
                continue;
            }
            
            //加入临时数组
            temp.push_back(num[i]);
            //标记为使用过 
            used[i] = 1; 

            //递归遍历
            recursion(num, used);
            
            //从临时数组去除
            temp.pop_back();
            //标记为未使用
            used[i] = 0;
        }
    }
     
    vector<vector<int> > permuteUnique(vector<int>& num) {
        //先按字典序排序,使重复数字相邻
        sort(num.begin(), num.end());

        //标记每个位置的数字是否被使用过
        //0表示未使用过,1表示使用过
        vector<int> used(num.size(), 0);

        //递归获取
        recursion(num, used);

        //返回结果
        return res;
    }
private:
    vector<vector<int>> res;
    vector<int> temp;
};

JZ38 字符串的排列(这个题目是字符串,和上一个题目数组是相同的方法)
中等 通过率:23.80% 时间限制:1秒 空间限制:256M
知识点字符串递归
描述
输入一个长度为 n 字符串,打印出该字符串中字符的所有排列,你可以以任意顺序返回这个字符串数组。
例如输入字符串ABC,则输出由字符A,B,C所能排列出来的所有字符串ABC,ACB,BAC,BCA,CBA和CAB。

数据范围:n<10
要求:空间复杂度 O(n!),时间复杂度 O(n!)
输入描述:
输入一个字符串,长度不超过10,字符只包括大小写字母。
示例1
输入:
“ab”
返回值:
[“ab”,“ba”]
说明:
返回[“ba”,“ab”]也是正确的
示例2
输入:
“aab”
返回值:
[“aab”,“aba”,“baa”]
示例3
输入:
“abc”
返回值:
[“abc”,“acb”,“bac”,“bca”,“cab”,“cba”]
示例4
输入:
“”
返回值:
[“”]
关联企业

class Solution {
public:
    void recursion(string &str, vector<int> &used){
        //临时字符串满足条件放入字符串数组
        if(temp.size() == str.length()) {
            res.push_back(temp);
            return;
        }

        //遍历所有元素,选取一个元素加入临时字符串temp
        for(int i = 0; i < str.length(); ++i) {
            //如果该元素已经被加入临时字符串temp,继续遍历
            if(used[i] == 1) {
                continue;
            }

            //当前的元素str[i]和前一个元素str[i-1]相同,
            //并且前一个元素str[i-1]已经用过,
            //继续遍历
            if(i > 0 && str[i-1] == str[i] && 1 == used[i-1]) {
                continue;
            }
            
            //加入临时字符串
            temp.push_back(str[i]);
            //标记为使用过 
            used[i] = 1; 

            //递归遍历
            recursion(str, used);
            
            //从临时字符串去除
            temp.pop_back();
            //标记为未使用
            used[i] = 0;
        }
    }
     
    vector<string> Permutation(string str) {
        //先按字典序排序,使重复字符相邻
        sort(str.begin(), str.end());

        //标记每个位置的字符是否被使用过
        //0表示未使用过,1表示使用过
        vector<int> used(str.size(), 0);

        //递归获取
        recursion(str, used);

        //返回结果
        return res;
    }
private:
    vector<string> res;
    string temp;
};

BM57 岛屿数量
题目
题解(135)
讨论(187)
排行
面经new
中等 通过率:41.25% 时间限制:1秒 空间限制:256M
知识点
dfs
广度优先搜索(BFS)
搜索
描述
给一个01矩阵,1代表是陆地,0代表海洋, 如果两个1相邻,那么这两个1属于同一个岛。我们只考虑上下左右为相邻。
岛屿: 相邻陆地可以组成一个岛屿(相邻:上下左右) 判断岛屿个数。
例如:
输入
[
[1,1,0,0,0],
[0,1,0,1,1],
[0,0,0,1,1],
[0,0,0,0,0],
[0,0,1,1,1]
]
对应的输出为3
(注:存储的01数据其实是字符’0’,‘1’)
示例1
输入:
[[1,1,0,0,0],[0,1,0,1,1],[0,0,0,1,1],[0,0,0,0,0],[0,0,1,1,1]]
复制
返回值:
3
复制
示例2
输入:
[[0]]
复制
返回值:
0
复制
示例3
输入:
[[1,1],[1,1]]
复制
返回值:
1
复制
备注:
01矩阵范围<=200*200

方法一:深度优先搜索dfs

知识点:深度优先搜索(dfs) 深度优先搜索一般用于树或者图的遍历,其他有分支的(如二维矩阵)也适用。它的原理是从初始点开始,一直沿着同一个分支遍历,直到该分支结束,然后回溯到上一级继续沿着一个分支走到底,如此往复,直到所有的节点都有被访问到。
思路:
矩阵中多处聚集着1,要想统计1聚集的堆数而不重复统计,那我们可以考虑每次找到一堆相邻的1,就将其全部改成0,而将所有相邻的1改成0的步骤又可以使用深度优先搜索(dfs):当我们遇到矩阵的某个元素为1时,首先将其置为了0,然后查看与它相邻的上下左右四个方向,如果这四个方向任意相邻元素为1,则进入该元素,进入该元素之后我们发现又回到了刚刚的子问题,又是把这一片相邻区域的1全部置为0,因此可以用递归实现。
123456789 //后续四个方向遍历if(i - 1 >= 0 && grid[i - 1][j] == ‘1’) dfs(grid, i - 1, j);if(i + 1 < n && grid[i + 1][j] == ‘1’) dfs(grid, i + 1,j);if(j - 1 >= 0 && grid[i][j - 1] == ‘1’) dfs(grid, i, j - 1);if(j + 1 < m && grid[i][j + 1] == ‘1’) dfs(grid, i, j + 1);
终止条件: 进入某个元素修改其值为0后,遍历四个方向发现周围都没有1,那就不用继续递归,返回即可,或者递归到矩阵边界也同样可以结束。
返回值: 每一级的子问题就是把修改后的矩阵返回,因为其是函数引用,也不用管。
本级任务: 对于每一级任务就是将该位置的元素置为0,然后查询与之相邻的四个方向,看看能不能进入子问题。
具体做法:
step 1:优先判断空矩阵等情况。
step 2:从上到下从左到右遍历矩阵每一个位置的元素,如果该元素值为1,统计岛屿数量。
step 3:接着将该位置的1改为0,然后使用dfs判断四个方向是否为1,分别进入4个分支继续修改。

class Solution {
public:
    /**
     * 判断岛屿数量
     * @param grid char字符型vector<vector<>> 
     * @return int整型
     */
    int solve(vector<vector<char> >& grid) {
        if (grid.empty()) {
            return 0;
        }
        int row = grid.size();
        int col = grid[0].size();
        int num = 0;
        for (int i = 0; i < row; ++i) {
            for (int j = 0; j < col; ++j) {
                if (grid[i][j] == '1') {
                    num++;
                    dfs(grid, i, j);
                }
            }
        }
        return num;
    }
    void dfs(vector<vector<char>>& grid, int i, int j){
        int row = grid.size();
        int col = grid[0].size();
        grid[i][j] = '0';
        if (i-1 >= 0 && grid[i-1][j] == '1') {
            dfs(grid, i-1, j);
        }

        if (i+1 < row && grid[i+1][j] == '1') {
            dfs(grid, i+1, j);
        }

        if (j-1 >= 0 && grid[i][j-1] == '1') {
            dfs(grid, i, j-1);
        }

        if (j+1 < col && grid[i][j+1] == '1') {
            dfs(grid, i, j+1);
        }
    }
};

方法二:广度优先搜索bfs

知识点:广度优先搜索(bfs)
广度优先搜索与深度优先搜索不同,它是将与某个节点直接相连的其它所有节点依次访问一次之后,再往更深处,进入与其他节点直接相连的节点。bfs的时候我们常常会借助队列的先进先出,因为从某个节点出发,我们将与它直接相连的节点都加入队列,它们优先进入,则会优先弹出,在它们弹出的时候再将与它们直接相连的节点加入,由此就可以依次按层访问。
思路:
统计岛屿的方法可以和方法一同样遍历解决,为了去重我们还是要将所有相邻的1一起改成0,这时候同样遍历连通的广度优先搜索(bfs)可以代替dfs。
具体做法:
step 1:优先判断空矩阵等情况。
step 2:从上到下从左到右遍历矩阵每一个位置的元素,如果该元素值为1,统计岛屿数量。
step 3:使用bfs将遍历矩阵遇到的1以及相邻的1全部置为0:利用两个队列辅助(C++可以使用pair),每次队列进入第一个进入的1,然后遍历队列,依次探讨队首的四个方向,是否符合,如果符合则置为0,且位置坐标加入队列,继续遍历,直到队列为空。

class Solution {
public:
    /**
     * 判断岛屿数量
     * @param grid char字符型vector<vector<>> 
     * @return int整型
     */
    int solve(vector<vector<char> >& grid) {
        if (grid.empty()) {
            return 0;
        }
        int row = grid.size();
        int col = grid[0].size();
        int num = 0;
        for (int i = 0; i < row; ++i) {
            for (int j = 0; j < col; ++j) {
                if (grid[i][j] == '1') {
                    num++;
                    grid[i][j] = '0';
                    queue<pair<int, int>> que;
                    que.push({i, j});
                    while (!que.empty()) {
                        auto temp = que.front();
                        que.pop();
                        int x = temp.first;
                        int y = temp.second;
                        if (x-1 >= 0 && grid[x-1][y] == '1') {
                            que.push({x-1, y});
                            grid[x-1][y] = '0';
                        }

                        if (x+1 < row && grid[x+1][y] == '1') {
                            que.push({x+1, y});
                            grid[x+1][y] = '0';
                        }

                        if (y-1 >= 0 && grid[x][y-1] == '1') {
                            que.push({x, y-1});
                            grid[x][y-1] = '0';
                        }

                        if (y+1 < col && grid[x][y+1] == '1') {
                            que.push({x, y+1});
                            grid[x][y+1] = '0';
                        }
                    }
                }
            }
        }
        return num;
    }
};

BM60 括号生成
中等 通过率:54.31% 时间限制:1秒 空间限制:256M
知识点递归
描述
给出n对括号,请编写一个函数来生成所有的由n对括号组成的合法组合。
例如,给出n=3,解集为:
“((()))”, “(()())”, “(())()”, “()()()”, “()(())”

数据范围:0≤n≤10
要求:空间复杂度 O(n),时间复杂度 O(2n)
示例1
输入:
1
返回值:
[“()”]

示例2
输入:
2
返回值:
[“(())”,“()()”]

class Solution {
public:
    void recursion(int left, int right, string temp, vector<string>& res, int n){
        //左括号和右括号都用完,临时字符串放入数组
        if(left == n && right == n){ 
            res.push_back(temp);
            return;
        }
        //使用一次左括号(刚开始递归都走到左括号成立,后面还有递归都走到右括号)
        if(left < n) {
            recursion(left + 1, right, temp + "(", res, n);
        }
        //使用一次右括号,左括号个数必须大于右括号(刚开始递归都走到右括号不成立)
        if(right < n && left > right) {
            recursion(left, right + 1, temp + ")", res, n);
        }
    }
    vector<string> generateParenthesis(int n) {
        //记录结果
        vector<string> res;
        //记录每次组装的字符串
        string temp; 
        //递归
        recursion(0, 0, temp, res, n); 
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值