[spark] spark推测式执行

本文介绍了Spark的推测式执行机制,包括其默认关闭状态及如何开启,如何检测需要推测执行的任务,以及推测任务的调度策略。核心是当一定比例的任务成功后,计算中位数并设定阈值,对超过该阈值的任务进行推测执行,以加速Stage的完成。调度时会避免在同一主机或黑名单Executor上执行推测任务。
摘要由CSDN通过智能技术生成

概述

推测任务是指对于一个Stage里面拖后腿的Task,会在其他节点的Executor上再次启动这个task,如果其中一个Task实例运行成功则将这个最先完成的Task的计算结果作为最终结果,同时会干掉其他Executor上运行的实例。spark推测式执行默认是关闭的,可通过spark.speculation属性来开启。

检测是否有需要推测式执行的Task

在SparkContext创建了schedulerBackend和taskScheduler后,立即调用了taskScheduler 的start方法:

override def start() {
    backend.start()
    if (!isLocal && conf.getBoolean("spark.speculation", false)) {
      logInfo("Starting speculative execution thread")
      speculationScheduler.scheduleAtFixedRate(new Runnable {
        override def run(): Unit = Utils.tryOrStopSparkContext(sc) {
          checkSpeculatableTasks()
        }
      }, SPECULATION_INTERVAL_MS, SPECULATION_INTERVAL_MS, TimeUnit.MILLISECONDS)
    }
  }

可以看到,TaskScheduler在启动SchedulerBackend后,在非local模式前提下检查推测式执行功能是否开启(默认关闭,可通过spark.speculation开启),若开启则会启动一个线程每隔SPECULATION_INTERVAL_MS(默认100ms,可通过spark.speculation.interval属性设置)通过checkSpeculatableTasks方法检测是否有需要推测式执行的tasks:

// Check for speculatable tasks in all our active jobs.
  def checkSpeculatableTasks() {
    var shouldRevive = false
    synchronized {
      shouldRevive = rootPool.checkSpeculatableTasks()
    }
    if (shouldRevive) {
      backend.reviveOffers()
    }
  }

然后又通过rootPool的方法判断是否有需要推测式执行的tasks,若有则会调用SchedulerBackend的reviveOffers去尝试拿资源运行推测任务。继续看看检测逻辑是什么样的:

override def 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值