概述
推测任务是指对于一个Stage里面拖后腿的Task,会在其他节点的Executor上再次启动这个task,如果其中一个Task实例运行成功则将这个最先完成的Task的计算结果作为最终结果,同时会干掉其他Executor上运行的实例。spark推测式执行默认是关闭的,可通过spark.speculation属性来开启。
检测是否有需要推测式执行的Task
在SparkContext创建了schedulerBackend和taskScheduler后,立即调用了taskScheduler 的start方法:
override def start() {
backend.start()
if (!isLocal && conf.getBoolean("spark.speculation", false)) {
logInfo("Starting speculative execution thread")
speculationScheduler.scheduleAtFixedRate(new Runnable {
override def run(): Unit = Utils.tryOrStopSparkContext(sc) {
checkSpeculatableTasks()
}
}, SPECULATION_INTERVAL_MS, SPECULATION_INTERVAL_MS, TimeUnit.MILLISECONDS)
}
}
可以看到,TaskScheduler在启动SchedulerBackend后,在非local模式前提下检查推测式执行功能是否开启(默认关闭,可通过spark.speculation开启),若开启则会启动一个线程每隔SPECULATION_INTERVAL_MS(默认100ms,可通过spark.speculation.interval属性设置)通过checkSpeculatableTasks方法检测是否有需要推测式执行的tasks:
// Check for speculatable tasks in all our active jobs.
def checkSpeculatableTasks() {
var shouldRevive = false
synchronized {
shouldRevive = rootPool.checkSpeculatableTasks()
}
if (shouldRevive) {
backend.reviveOffers()
}
}
然后又通过rootPool的方法判断是否有需要推测式执行的tasks,若有则会调用SchedulerBackend的reviveOffers去尝试拿资源运行推测任务。继续看看检测逻辑是什么样的:
override def