预备知识
先介绍在Spark SQL中两个非常重要的数据结构:Tree和Rule。
SparkSql的第一件事就是把SQLText解析成语法树,这棵树包含了很多节点对象,节点可以有特定的数据类型,同时可以有0个或者多个子节点,节点在SparkSQL中的表现形式为TreeNode对象。举个实际的例子:
- Literal(value: Int): 一个常量
- Attribute(name: String): 变量name
Add(left: TreeNode, right: TreeNode): 两个表达式的和
x + (1 + 2) 在代码中的表现形式为:Add(Attribute(x), Add(Literal(1), Literal(2)))
而Rule则是应用在Tree上的规则,通过模式匹配,匹配成功的就进行相应的规则变换,若不成功则继续匹配子节点,如在Optimizer模块中有个常量累加的优化规则,通过该规则,可以将两个常量节点直接转化为值相加后的一个常量节点,如下图:
可以看见先匹配第一个Add节点没有匹配成功,再匹配其子节点Add成功了。