生态圈中的这些组件或产品相互之间会有依赖,但又各自独立。比如habse和kafka会依赖zookeeper,hive会依赖mapreduce。
技能二:spark的生态圈、特点
spark生态圈是加州大学伯克利分校的 AMP 实验室打造的,是一个力图在算法(Algorithms)、机器(Machines)、人(People)之间通过大规模集成来展现大数据应用的平台。
如图 1所示,Spark 生态圈以 Spark Core 为核心,从 HDFS、Amazon S3 和 HBase 等持久层读取数据,以 Mesos、YARN 和自身携带的 Standalone 为 Cluster Manager 调度 Job 完成 Spark 应用程序的计算,这些应用程序可以来自于不同的组件。
如 Spark Shell/Spark Submit 的批处理,Spark Streaming 的实时处理应用,Spark SQL 的即席查询,MLlib 的机器学习,GraphX 的图处理和 SparkR 的数学计算等。
Spark特点:Spark具有运行速度快、易用性好、通用性强和随处运行等特点
技能三:Mapreduce的运行框架,spark和mapreduce巅峰对决
Mapreduce运行框架
1、框架图
Input→Mapper→shuffle→Reducer→Output
2.【Spark和MapReduce对比】
【总结】
尽管Spark相对于Hadoop而言具有较大优势,但Spark并不能完全替代Hadoop
1、在计算层面,Spark相比较MR(MapReduce)有巨大的性能优势,但至今仍有许多计算工具基于MR构架,比如非常成熟的Hive,hive的底层默认是MapReduce,但是可以经过与spark重新编译后,底层计算框架换成spark。
2、Spark仅做计算,而Hadoop生态圈不仅有计算(MR)也有存储(HDFS)和资源管理调度(YARN),HDFS和YARN仍是许多大数据
体系的核心架构。
技能四:秀一波操作
技能五:结构化数据和非结构化数据
1.结构化数据:即行数据,存储在数据库里,可以用二维表结构来逻辑表达实现的数据。
2.非结构化数据:不方便用数据库二维逻辑表来表现的数据,包括所有格式的办公文档、文本、图片、XML、HTML、各类报表、图像和音频/视频信息等等。
技能六:解释冷备和热备
1.热备:数据库运行时备份,实时的。例如:Oracle中的主备模式,备库实时同步主库数据。
2.冷备:数据库停止后备份,非实时。例如:数据库停止了,再去拷贝物理文件。
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数大数据工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年大数据全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上大数据开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加VX:vip204888 (备注大数据获取)
一个人可以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
以走的很快,但一群人才能走的更远。不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎扫码加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!**