目录
技术方案概述
本方案基于深度学习大模型构建颅前窝底脑膜瘤全周期诊疗系统,包含术前精准预测、术中动态决策、术后康复管理三大模块。通过多模态医疗数据融合与模型优化,实现肿瘤特性分析、手术风险评估、并发症预测及个性化治疗方案生成。
一、核心算法实现
1. 多模态数据融合算法(伪代码)
def multimodal_fusion(MRI_data, CT_data, pathology_report):
# 影像特征提取
MRI_features = extract_features(MRI_data, model="ResNet50") # 使用预训练ResNet提取特征
CT_features = extract_features(CT_data, model="DenseNet")
# 病理报告语义解析
pathology_embedding = BERT_encode(pathology_report) # 使用医疗领域BERT模型
# 特征对齐与融合
fused_features = align_and_fuse(MRI_features, CT_features, pathology_embedding)
# 肿瘤边界预测
tumor_boundary = segment_tumor(fused_features, model="UNet++")
return tumor_boundary, risk_scores
2. 并发症风险预测模型(伪代码)
def complication_risk_prediction(patient_data):
# 特征工程
features = [age, tumor_size, surgery_time, vascular_proximity]
# LSTM时序预测
risk_scores = LSTM_model(features, historical_data)
# 风险分级
risk_level = classify_risk(risk_scores)
return risk_level, intervention_recommendations