0-1背包问题

动态规划

动态规划解决0-1背包问题首先要找到状态,以及状态转换函数。

if(j<w[i-1])dp[i][j]=dp[i-1][j];

//当j容量小于第i件物品(序号为i-1)重量时,那么装不进i,最大价值不变

else dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i-1]]+v[i-1]);

//反之,比较装i和不装i的价值,取最大值

开数组,本题中,开dp数组,记录前i件物品,j容量时的最大价值。然后写入初始条件,循环计算dp数组。然后根据每一次的决策,逆序顺藤摸瓜,将最大价值物品方案输出。最后返回最大价值dp[n][c]。

#include <iostream>
#include <algorithm>
using namespace std;
int knapSack(int w[],int v[],int n,int c);
int main() {
	int n,c;//物品数量和容量 
	cout<<"请输入物品数量:"<<endl;
	cin>>n;
	int w[n],v[n];//物品重量和物品价值数组 
	cout<<"请分别输入物品的重量:"<<endl;
	for (int i = 0; i < n; ++i) {
		cin>>w[i];
	}
	cout<<"请输入物品价值:"<<endl;
	for (int i = 0; i < n; ++i) {
		cin>>v[i];
	}
	cout<<"请输入背包容量:"<<endl;
	cin>>c;
	cout<<"背包中客房下的物品的最大价值为:"<<knapSack(w,v,n,c)<<endl;
	return 0;
}
int knapSack(int w[],int v[],int n,int c) {//dp计算函数 
	int dp[n+1][c+1];//dp数组,记录前i件物品,j容量时的最大价值 
	int things[n];//物品数组,记录最大价值情况物品序号 
	for(int i=0; i<=n; i++)dp[i][0]=0;//当前0件物品时,最大价值初始化为零 
	for(int i=0; i<=c; i++)dp[0][i]=0;//当背包容量为0时,最大价值初始化为零 
	for(int i=1; i<=n; i++)//i,j dp循环求值 
		for(int j=1; j<=c; j++)
			if(j<w[i-1])dp[i][j]=dp[i-1][j];//当j容量小于第i件物品(序号为i-1)重量时,那么装不进i,最大价值不变 
			else dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i-1]]+v[i-1]);//反之,比较装i和不装i的价值,取最大值 
	for(int j=c,i=n;i>0; i--) {//顺藤摸瓜寻求物品序列 
		if(dp[i][j]>dp[i-1][j]) {
			things[i-1]=1;
			j=j-w[i-1];
		} else {
			things[i-1]=0;
		}
	}
	cout<<"最大价值物品解释(物品序号):"; 
	for(int i=0;i<n;i++)
	{
		if(things[i]==1)cout<<i+1<<" ";
	} 
	cout<<endl;
	return dp[n][c];
} 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值