动态规划
动态规划解决0-1背包问题首先要找到状态,以及状态转换函数。
if(j<w[i-1])dp[i][j]=dp[i-1][j];
//当j容量小于第i件物品(序号为i-1)重量时,那么装不进i,最大价值不变
else dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i-1]]+v[i-1]);
//反之,比较装i和不装i的价值,取最大值
开数组,本题中,开dp数组,记录前i件物品,j容量时的最大价值。然后写入初始条件,循环计算dp数组。然后根据每一次的决策,逆序顺藤摸瓜,将最大价值物品方案输出。最后返回最大价值dp[n][c]。
#include <iostream>
#include <algorithm>
using namespace std;
int knapSack(int w[],int v[],int n,int c);
int main() {
int n,c;//物品数量和容量
cout<<"请输入物品数量:"<<endl;
cin>>n;
int w[n],v[n];//物品重量和物品价值数组
cout<<"请分别输入物品的重量:"<<endl;
for (int i = 0; i < n; ++i) {
cin>>w[i];
}
cout<<"请输入物品价值:"<<endl;
for (int i = 0; i < n; ++i) {
cin>>v[i];
}
cout<<"请输入背包容量:"<<endl;
cin>>c;
cout<<"背包中客房下的物品的最大价值为:"<<knapSack(w,v,n,c)<<endl;
return 0;
}
int knapSack(int w[],int v[],int n,int c) {//dp计算函数
int dp[n+1][c+1];//dp数组,记录前i件物品,j容量时的最大价值
int things[n];//物品数组,记录最大价值情况物品序号
for(int i=0; i<=n; i++)dp[i][0]=0;//当前0件物品时,最大价值初始化为零
for(int i=0; i<=c; i++)dp[0][i]=0;//当背包容量为0时,最大价值初始化为零
for(int i=1; i<=n; i++)//i,j dp循环求值
for(int j=1; j<=c; j++)
if(j<w[i-1])dp[i][j]=dp[i-1][j];//当j容量小于第i件物品(序号为i-1)重量时,那么装不进i,最大价值不变
else dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i-1]]+v[i-1]);//反之,比较装i和不装i的价值,取最大值
for(int j=c,i=n;i>0; i--) {//顺藤摸瓜寻求物品序列
if(dp[i][j]>dp[i-1][j]) {
things[i-1]=1;
j=j-w[i-1];
} else {
things[i-1]=0;
}
}
cout<<"最大价值物品解释(物品序号):";
for(int i=0;i<n;i++)
{
if(things[i]==1)cout<<i+1<<" ";
}
cout<<endl;
return dp[n][c];
}