LeetCode 152. 乘积最大子数组

LeetCode 152. 乘积最大子数组

给你一个整数数组 nums ,请你找出数组中乘积最大的非空连续 子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。
测试用例的答案是一个 32-位 整数。
示例 1:
输入: nums = [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:
输入: nums = [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。
提示:
1 <= nums.length <= 2 * 104
-10 <= nums[i] <= 10
nums 的任何子数组的乘积都 保证 是一个 32-位 整数

动态规划

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        # s[i] 表示以 nums[i] 结尾的乘积最小的数组的乘积大小
        # g[i] 表示以 nums[i] 结尾的乘积最大的数组的乘积大小
        # s[i] = min{s[i-1] * nums[i], g[i-1] * nums[i], nums[i]}
        # g[i] = max{s[i-1] * nums[i], g[i-1] * nums[i], nums[i]}

        s, g = [sys.maxsize] * len(nums), [-sys.maxsize] * len(nums)
        s[0] = g[0] = nums[0]
        for i in range(1, len(nums)):
            s[i] = min(s[i - 1] * nums[i], g[i - 1] * nums[i], nums[i])
            g[i] = max(s[i - 1] * nums[i], g[i - 1] * nums[i], nums[i])
        return max(g)

时间复杂度:O(n)
空间复杂度:O(n)

优化方案,由于状态转移方程中当前状态仅仅依赖于上一个状态,所以数组可以压缩为一个变量,O(n)可以优化为O(1)

class Solution:
    def maxProduct(self, nums: List[int]) -> int:
        # s[i] 表示以 nums[i] 结尾的乘积最小的数组的乘积大小
        # g[i] 表示以 nums[i] 结尾的乘积最大的数组的乘积大小
        # s[i] = min{s[i-1] * nums[i], g[i-1] * nums[i], nums[i]}
        # g[i] = max{s[i-1] * nums[i], g[i-1] * nums[i], nums[i]}

        res = s = g = nums[0]
        for i in range(1, len(nums)):
            _s = min(s * nums[i], g * nums[i], nums[i])
            _g = max(s * nums[i], g * nums[i], nums[i])
            s, g = _s, _g
            res = max(res, g)
        return res

时间复杂度:O(n)
空间复杂度:O(1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值