152-乘积最大子数组

题目

给你一个整数数组 nums ,请你找出数组中乘积最大的连续子数组(该子数组中至少包含一个数字),并返回该子数组所对应的乘积。

示例 1:

输入: [2,3,-2,4]
输出: 6
解释: 子数组 [2,3] 有最大乘积 6。
示例 2:

输入: [-2,0,-1]
输出: 0
解释: 结果不能为 2, 因为 [-2,-1] 不是子数组。

题解 动态规划

var maxProduct = (nums) => {
  let res = nums[0]
  let prevMin = nums[0]
  let prevMax = nums[0]
  let temp1 = 0, temp2 = 0
  for (let i = 1; i < nums.length; i++) {//从1开始,0已经定义了
    temp1 = prevMin * nums[i]
    temp2 = prevMax * nums[i]
    prevMin = Math.min(temp1, temp2, nums[i])
    prevMax = Math.max(temp1, temp2, nums[i])
    res = Math.max(prevMax, res)
  }
  return res
}

笔记:

1.dp[i][x] 只和 dp[i - 1][x]有关,与再之前的结果无关
我们用两个变量分别去存每个位置算出的最小积和最大积,在迭代中更新即可

- base case
  prevMin = nums[0]
  prevMax = nums[0]
- 状态转移方程:
  prevMin = min( prevMin * nums[i], prevMax * nums[i], nums[i])  从第 0 项到第 i 项范围内的子数组的最小乘积
- prevMax = max( prevMin * nums[i], prevMax * nums[i], nums[i])  从第 0 项到第 i 项范围内的子数组的最大乘积

等号右边的 prevMin 和 prevMax 属于 dp[i - 1]的。等号左边的 prevMin 和 prevMax 属于 dp[i] 的
错误:第一个等式求出的新 prevMin 用在第二个等式的计算
解决:用变量暂存 prevMin * nums[i]和 prevMax * nums[i]
  1. 三种可能,负值乘之前的最小值,正值*之前的最大值,本身
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codrab

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值