在我之前的文章 “Solutions:应用程序性能监控/管理(APM)实践”,我已经详细介绍了 APM 以及如何针对 Java 应用进行 APM。在那篇文章中的 Baidu 天气服务由于一些原因现在不能正常工作。在今天的文章中,我将使用 Elastic 官方发布的 Java 例子来做详细的描述。我将一步一步地介绍如何进行设置。
安装
在今天的练习中,我们将使用 docker 来部署 Elastic Stack。首先,我们到如下的地址来下载 docker-compose.yml 文件:
curl -sLO https://raw.githubusercontent.com/elastic/apm-contrib/master/stack/docker-compose.yml
为方便大家阅读,我将该文件贴于下面:
docker-compose.yml
{
"networks": {
"default": {
"name": "apm-integration-testing"
}
},
"services": {
"apm-server": {
"cap_add": [
"CHOWN",
"DAC_OVERRIDE",
"SETGID",
"SETUID"
],
"cap_drop": [
"ALL"
],
"command": [
"apm-server",
"-e",
"--httpprof",
":6060",
"-E",
"apm-server.rum.enabled=true",
"-E",
"apm-server.rum.event_rate.limit=1000",
"-E",
"apm-server.host=0.0.0.0:8200",
"-E",
"apm-server.read_timeout=1m",
"-E",
"apm-server.shutdown_timeout=2m",
"-E",
"apm-server.write_timeout=1m",
"-E",
"logging.json=true",
"-E",
"logging.metrics.enabled=false",
"-E",
"setup.kibana.host=kibana:5601",
"-E",
"setup.template.settings.index.number_of_replicas=0",
"-E",
"setup.template.settings.index.number_of_shards=1",
"-E",
"setup.template.settings.index.refresh_interval=1ms",
"-E",
"monitoring.elasticsearch=true",
"-E",
"monitoring.enabled=true",
"-E",
"apm-server.instrumentation.enabled=true",
"-E",
"apm-server.kibana.enabled=true",
"-E",
"apm-server.kibana.host=kibana:5601",
"-E",
"apm-server.agent.config.cache.expiration=30s",
"-E",
"output.elasticsearch.hosts=[\"elasticsearch:9200\"]",
"-E",
"output.elasticsearch.enabled=true",
"-E",
"output.elasticsearch.pipelines=[{pipeline: 'apm'}]",
"-E",
"apm-server.register.ingest.pipeline.enabled=true"
],
"container_name": "localtesting_${STACK_VERSION:-7.5.1}_apm-server",
"depends_on": {
"elasticsearch": {
"condition": "service_healthy"
},
"kibana": {
"condition": "service_healthy"
}
},
"healthcheck": {
"interval": "10s",
"retries": 12,
"test": [
"CMD",
"curl",
"--write-out",
"'HTTP %{http_code}'",
"--fail",
"--silent",
"--output",
"/dev/null",
"http://localhost:8200/"
]
},
"image": "docker.elastic.co/apm/apm-server:${STACK_VERSION:-7.5.1}",
"labels": [
"co.elastic.apm.stack-version=${STACK_VERSION:-7.5.1}"
],
"logging": {
"driver": "json-file",
"options": {
"max-file": "5",
"max-size": "2m"
}
},
"ports": [
"127.0.0.1:8200:8200",
"127.0.0.1:6060:6060"
]
},
"elasticsearch": {
"container_name": "localtesting_${STACK_VERSION:-7.5.1}_elasticsearch",
"environment": [
"bootstrap.memory_lock=true",
"cluster.name=docker-cluster",
"cluster.routing.allocation.disk.threshold_enabled=false",
"discovery.type=single-node",
"path.repo=/usr/share/elasticsearch/data/backups",
"ES_JAVA_OPTS=-XX:UseAVX=2 -Xms1g -Xmx1g",
"path.data=/usr/share/elasticsearch/data/${STACK_VERSION:-7.5.1}",
"xpack.security.enabled=false",
"xpack.license.self_generated.type=trial",
"xpack.monitoring.collection.enabled=true"
],
"healthcheck": {
"interval": "20",
"retries": 10,
"test": [
"CMD-SHELL",
"curl -s http://localhost:9200/_cluster/health | grep -vq '\"status\":\"red\"'"
]
},
"image": "docker.elastic.co/elasticsearch/elasticsearch:${STACK_VERSION:-7.5.1}",
"labels": [
"co.elastic.apm.stack-version=${STACK_VERSION:-7.5.1}"
],
"logging": {
"driver": "json-file",
"options": {
"max-file": "5",
"max-size": "2m"
}
},
"ports": [
"127.0.0.1:9200:9200"
],
"ulimits": {
"memlock": {
"hard": -1,
"soft": -1
}
},
"volumes": [
"esdata:/usr/share/elasticsearch/data"
]
},
"kibana": {
"container_name": "localtesting_${STACK_VERSION:-7.5.1}_kibana",
"depends_on": {
"elasticsearch": {
"condition": "service_healthy"
}
},
"environment": {
"ELASTICSEARCH_URL": "elasticsearch:9200",
"SERVER_NAME": "kibana.example.org",
"XPACK_MONITORING_ENABLED": "true",
"XPACK_XPACK_MAIN_TELEMETRY_ENABLED": "false"
},
"healthcheck": {
"interval": "10s",
"retries": 20,
"test": [
"CMD",
"curl",
"--write-out",
"'HTTP %{http_code}'",
"--fail",
"--silent",
"--output",
"/dev/null",
"http://kibana:5601/api/status"
]
},
"image": "docker.elastic.co/kibana/kibana:${STACK_VERSION:-7.5.1}",
"labels": [
"co.elastic.apm.stack-version=${STACK_VERSION:-7.5.1}"
],
"logging": {
"driver": "json-file",
"options": {
"max-file": "5",
"max-size": "2m"
}
},
"ports": [
"127.0.0.1:5601:5601"
]
}
},
"version": "2.1",
"volumes": {
"esdata": {
"driver": "local"
},
"pgdata": {
"driver": "local"
}
}
}
在 docker-compose.yml 所处的同一个目录下,我们创建一个如下的文件 .env:
$ pwd
/Users/liuxg/data/apm-docker
$ ls -al
total 24
drwxr-xr-x 4 liuxg staff 128 Jul 1 11:25 .
drwxr-xr-x 136 liuxg staff 4352 Jul 1 11:16 ..
-rw-r--r-- 1 liuxg staff 21 Jul 1 11:25 .env
-rw-r--r-- 1 liuxg staff 5391 Jul 1 11:16 docker-compose.yml
$ cat .env
STACK_VERSION=7.13.2
在上面的 .env 文件中,我们修改变量 STACK_VERSION 为我们所喜欢的 Elastic Stack 版本。
接下来,我们使用如下的命令来启动 Elastic Stack:
docker-compose up
这样我们就完成了 Elasticsearch,Kibana 及 APM Server 的安装:
Java Demo 应用
在这一节,我们来下载 Elastic 官方推荐的 Java Demo 应用来进行展示。我们首先来创建一个目录 demos,并在该目录下打入如下的命令:
git clone https://github.com/elastic/opbeans-java
这是一个 Java 编写的 Spring boot 应用。你需要安装 Java 的编译环境以及 Maven 来对它进行编译。等代码下载完毕后,我们进行 opbeans-java 目录,并打入如下的命令来进行编译:
cd opbeans-java/opbeans
mvn package
在上面,我们可以看到一个叫做 opbeans-0.0.1-SNAPSHOT.jar 的 jar 文件以及被成功生成,并在 target 目录下:
$ ls target/opbeans-0.0.1-SNAPSHOT.jar
target/opbeans-0.0.1-SNAPSHOT.jar
这样我们就完成了对 Java 应用的编译工作。
将 APM 数据流式传送到 Elastic Stack
接下来,我将描述如何把 APM 的数据传送至 Elastic Stack。首先,我们打开 Kibana:
选择上面的 APM:
由于我们已经安装好 Elastic Stack 了,所以我们直接跳过前面的部分来直接配置 Java APM agent。我们首先点击上面的 Maven Central 链接来下载 agent jar,并把相应的文件保存于 opbean-java/opbean 目录下:
我们也可以直接使用如下的命令来获得:
wget -O elastic-apm-agent-1.24.0.jar https://search.maven.org/remotecontent\?filepath\=co/elastic/apm/elastic-apm-agent/1.24.0/elastic-apm-agent-1.24.0.jar
上面的命令适合于在云上的部署。这样在我们的目录中会发现一个新下载的 elastic-apm-agent-1.24.0.jar 文件:
$ pwd
/Users/liuxg/demos/apm/opbeans-java/opbeans
$ ls
elastic-apm-agent-1.24.0.jar pom.xml
mvnw src
mvnw.cmd target
我们接下来按照 Kibana 中所提示的那样:
我们在 terminal 中输入如下的命令:
java -javaagent:./elastic-apm-agent-1.24.0.jar \
-Delastic.apm.service_name=opbeans-java \
-Delastic.apm.server_urls=http://localhost:8200 \
-Delastic.apm.secret_token= \
-Delastic.apm.environment=production \
-Delastic.apm.application_packages=co.elastic.apm.opbeans \
-jar ./target/opbeans-0.0.1-SNAPSHOT.jar
一旦我们成功运行,我们可以看到如下的画面:
从上面的过程中,我们可以看出来,我们并没有对我们的 Java 应用做任何的修改。我们只是通过在命令行中添加一下参数从而使得 Java agents 能够收集 APM 信息。这种操作我们称之为 instrument,也即插庄。
上面启动 Java 应用的方式,我们称之为手动配置。我们其实可以通过一种叫做自动配置的方式来对 Java 应用进行监控。详细描述可以参阅文章 “设置 Elastic APM Java 代理 - 自动设置”。
在上面,我们成功地启动了 Java Spring Boot 应用。我们带自己的浏览器,并输入地址:http://localhost:8080/
我们在上面的界面中进行一些操作从能够生产一些请求。我们将在后面的 APM 应用中来分析这些请求的性能。
我们再回到 Kibana 的界面:
点击上面的 Check APM Server status 按钮。我们可以看到我们已经成功地收到数据了。
点击上面的 Launch APM 或者 直接启动 APM 应用我们就可以查看到这个 Spring Boot 的应用性能。
为了能够在下面的分析中看到一些错误的信息,我们故意在 Spring Boot 的应用中访问不存在的地址:http://localhost:8080/is-it-coffee-time
可视化 APM 数据
我们重新回到上面的 APM 应用中:
在上面,我们可以看到有两个 Services。上面显示了一些粗略的信息。我们点击上面的 opbeans-java 链接。我们可以看到这个应用的 APM overview 情况。
从上面,我们可以看到各种指标信息。比如针对 Transanctions 来说,我们看到对我们影响最大的一个 API 接口是 APIRestController#orders,而且它还有一些错误:
点击上面的链接:
从上面,我们可以看出来有一个 transactoin 所花的时间较长。其中的原因是因为有一个错误。我们点击上面的 span:
我们可以看到更为详细的信息:
我们点击上面的 Transactions 链接:
我们点击上面的 Erros:
点击上面的 Broken pipe:
我们可以看到更为详细的错误信息。
我们点击 JVM:
点击上面的 liuxg 链接:
我们可以看到 JVM 的运行状况。
我们点击 Service Map:
我们可以看到 opbeans-java 访问 h2 数据库。点击上面的 Service Details。它会带我们回到 Service overview 页面: