自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(18)
  • 收藏
  • 关注

原创 QGIS 通用工具和 Google Earth Engine(GEE)的介绍与源代码演示

QGIS 提供了丰富的工具和插件,适用于各种地理空间数据处理和分析任务;QGIS 通用工具和 Google Earth Engine(GEE)是两个功能强大的地理信息系统(GIS)工具,它们提供了丰富的功能和资源,可以用于地理空间数据处理和分析。QGIS(Quantum GIS)是一个开源的、跨平台的地理信息系统软件,它提供了各种功能强大的工具和插件,用于地理数据的创建、编辑、分析和可视化。通过结合使用 QGIS 的通用工具和 GEE 的数据和算法,我们可以更加灵活地处理和分析地理空间数据。

2023-09-26 11:55:01 518 1

原创 Google Earth Engine 图表绘制技巧:chart.draw的使用

chart.draw是GEE中的一个重要函数,它允许用户在地图上绘制交互式图表,并提供了许多有用的参数和选项。在上面的示例代码中,我们使用了ui.Chart.image.series函数来创建一个图表,并指定了要绘制的图表类型(折线图)、数据集(collection)、区域(region)以及统计方法(平均值)。综上所述,chart.draw函数是Google Earth Engine中一个非常有用的工具,可用于在地图上绘制交互式图表。现在,我们可以使用chart.draw函数在地图上绘制图表。

2023-09-25 23:17:04 110 1

原创 Google Earth Engine Sentinel 数据的云掩膜详解

总结而言,GEE提供了强大的工具和算法,可以帮助我们进行Sentinel数据的云掩膜处理。通过适当选择和调整云掩膜算法,我们可以从Sentinel图像中去除云覆盖,获得更准确的地表信息。总结而言,GEE提供了强大的工具和算法,可以帮助我们进行Sentinel数据的云掩膜处理。除了上述示例中的基于阈值的云掩膜方法外,GEE还提供了其他一些云掩膜算法,如基于指数的方法和基于机器学习的方法。除了上述示例中的基于阈值的云掩膜方法外,GEE还提供了其他一些云掩膜算法,如基于指数的方法和基于机器学习的方法。

2023-09-24 08:57:54 638

原创 Python API教程:使用geemap加载矢量和矢量集合,并添加属性和地图图例

在本教程中,我们将介绍如何使用geemap库加载矢量和矢量集合,并在地图上添加属性和图例。geemap是一个基于Google Earth Engine的Python库,它提供了一系列方便易用的工具,用于可视化和分析地理数据。首先,我们需要安装geemap库。导入geemap库并初始化地图。geemap库提供了一个Map类,用于创建交互式地图。要加载矢量数据,我们可以使用geemap库中的函数。该函数可以从本地文件或URL加载GeoJSON文件。

2023-09-23 13:27:44 346

原创 Landsat影像的维帽变换分析与矩阵乘法和影像到矩阵的转换在GEE中

Landsat影像是遥感领域中常用的数据源之一,而维帽变换(Tasseled Cap Transformation)是一种常见的图像处理技术,用于提取和分析遥感影像中的地物信息。在Google Earth Engine(GEE)平台上,我们可以利用矩阵乘法和影像到矩阵的转换来实现Landsat影像的维帽变换分析。本文将详细介绍如何在GEE中进行这一分析,并提供相应的源代码。本文详细介绍了如何在GEE中利用矩阵乘法和影像到矩阵的转换进行Landsat影像的维帽变换分析。

2023-09-23 12:29:42 237

原创 使用Google Earth Engine在线展示动图的UI

在本文中,我将向您展示如何使用Google Earth Engine的UI库创建一个可以在线展示动图的应用程序。Google Earth Engine提供了丰富的功能和数据集,您可以利用这些功能和数据集创建各种有趣的地理空间应用程序。用户可以点击"播放"按钮开始动图的播放,点击"暂停"按钮暂停动图的播放。在这个例子中,我们创建了一个"播放"按钮和一个"暂停"按钮。在这个例子中,我们创建了一个地图,并将UI布局添加为地图的子组件。接下来,我们可以定义一个UI布局,以显示动图和一些控件。模块来创建用户界面,

2023-09-23 08:30:41 76

原创 方差统计分析与CSV下载:使用广义估计方程(GEE)进行数据分析

在数据分析中,方差统计分析是一种重要的工具,用于衡量数据的离散程度。而广义估计方程(Generalized Estimating Equations,简称GEE)是一种常用的统计方法,用于分析重复测量数据或者相关数据。本文将介绍如何使用GEE进行方差统计分析,并将结果以CSV格式进行下载。通过上述步骤,我们可以使用GEE进行方差统计分析,并将结果以CSV格式进行下载。该方法在处理重复测量数据或相关数据时非常有用,能够提供关于变量之间关系的有价值的统计信息。函数来构建GEE模型。如有任何疑问,请随时提问。

2023-09-22 18:40:15 265

原创 Google Earth Engine(GEE)与Django框架的学习价值

然而,如果你想构建一个具有用户界面和交互性的Web应用程序,Django是一个理想的选择。你可以使用Django来开发GEE应用程序的前端和后端,以提供用户友好的界面和丰富的功能。它可以让你充分利用Python生态系统中的其他工具和库,提供强大的Web应用程序开发功能,并为你的GEE项目带来更多的灵活性和交互性。Django是一个流行的Python Web框架,它提供了许多功能和工具,用于开发强大的Web应用程序。下面是一个简单的示例,展示了如何使用Django框架创建一个简单的GEE Web应用程序。

2023-09-22 16:16:18 280

原创 使用Google Earth Engine和Python检测Sentinel图像中的变化:最大似然检验和P值

在本文中,我们将介绍如何使用Google Earth Engine(GEE)和Python来检测Sentinel图像中的变化,使用最大似然检验和P值。在上述代码中,我们使用np.sum()函数计算变化数组的和,并指定axis=0以沿时间轴求和。然后,我们使用np.sum()函数计算变化数组中大于零的像素数,并除以数组的时间步数,以计算P值。完成变化检测后,我们可以使用geemap库中的imagecollection_to_ndarray()函数将图像集合转换为NumPy数组,以便进行进一步的处理和分析。

2023-09-22 05:13:52 258

原创 Google Earth Engine中NPP的计算及源代码详解

接下来,我们计算了植物生长季节的长度,并使用相关参数计算了NPP。最后,我们对NPP结果进行了可视化,并在控制台打印了NPP的统计信息。其中,fPAR表示光合有效辐射比例,PAR表示光合有效辐射,lightUseEfficiency表示光能利用效率,waterUseEfficiency表示水分利用效率,growingSeasonLength表示植物生长季节长度。NPP的计算通常基于地球生态系统模型,其中包括光合作用的光能吸收、光合有效辐射的利用效率、蒸腾作用的水分利用效率以及植物生长季节的长度等因素。

2023-09-21 23:34:53 2673

原创 使用Google Earth Engine将Shapefile文件导出到Google Drive

总结起来,通过使用Google Earth Engine的强大功能,结合JavaScript编程,您可以轻松地将Shapefile文件导出到Google Drive中。需要注意的是,在使用GEE导出文件时,需要在代码执行之前进行身份验证。运行上述代码后,GEE将开始导出Shapefile文件,并将结果存储在Google Drive中指定的文件夹中。,包括导出文件存储在Google Drive中的文件夹名称和导出文件的格式(在本例中为GeoJSON)。在上述示例中,导出的文件将以。接下来,定义了导出选项。

2023-09-21 09:30:25 498

原创 Google Earth Engine 使用 MODIS 数据进行水体分析

总结起来,Google Earth Engine 提供了强大的功能和广泛的数据集,使得使用 MODIS 数据进行水体分析变得更加容易。通过加载 MODIS 数据集,选择感兴趣区域并筛选图像,我们可以进行水体面积计算和其他水体分析。使用 MODIS 数据进行水体分析可以提供高时空分辨率的遥感观测数据,使得我们能够更好地理解水体的动态变化。除了计算水体面积,我们还可以使用 MODIS 数据进行其他水体分析,例如水体变化检测、水体指数计算等。函数将该函数应用于筛选后的图像集合,从而计算每个图像中的水体面积。

2023-09-21 09:14:04 772

原创 使用Google Earth Engine实现地理信息的可视化和监测功能

综上所述,Google Earth Engine提供了丰富的功能和工具,用于地理信息的可视化和监测。通过加载、处理和分析地理空间数据,我们可以轻松地实现各种监测功能,并通过可视化展示地理信息的变化和趋势。除了可视化功能,Google Earth Engine还提供了一系列的分析工具,如空间查询、图像分类和时间序列分析等。除了单一图层的可视化,我们还可以实现监测功能,如监测植被的变化。在上述代码中,我们加载了两个时间点的NDVI图像,并计算了它们之间的差异。然后,我们定义了差异图像的可视化参数,并使用。

2023-09-20 21:51:06 582 1

原创 使用Google Earth Engine和Sentinel数据集进行土地分类的案例

在上述代码中,我们首先导入了训练数据,训练数据是一个包含土地覆盖类型标签的矢量数据集。然后,我们选择了用于分类的属性,即影像数据的波段。接下来,我们定义了随机森林分类器的参数,并使用训练数据训练了分类器。最后,我们将分类器应用于裁剪后的影像数据,得到了土地分类结果。通过导入Sentinel影像数据,选择适当的土地分类算法,并将结果可视化,我们可以获得关于地表覆盖类型的有用信息。在上述代码中,我们选择了2019年的Sentinel-2影像数据,并根据感兴趣区域对数据进行了裁剪。

2023-09-20 19:42:12 694 1

原创 使用Google Earth Engine(GEE)批量下载Sentinel P数据

通过选择感兴趣的区域和时间范围,并利用GEE的导出功能,您可以轻松地获取Sentinel P数据并进行后续分析和应用。通过选择感兴趣的区域和时间范围,并利用GEE的导出功能,您可以轻松地获取Sentinel P数据并进行后续分析和应用。请将"description"替换为您想要为导出文件命名的描述,并将"scale"设置为您希望导出的图像分辨率(以米为单位)。请将"description"替换为您希望为导出文件命名的描述,并将"scale"设置为您希望导出的图像分辨率(以米为单位)。

2023-09-20 17:00:00 754 1

原创 高性能计算:使用高度GEE的源代码实现

通过使用高度GEE,我们可以轻松地实现高性能计算任务,并发挥计算机集群的潜力。高度GEE提供了丰富的功能和工具,可以帮助我们简化开发过程并提高计算效率。无论是科学研究还是工程应用,高度GEE都是一个强大的工具,可以加速计算任务的处理速度。高度GEE是一种通用执行环境,它提供了一种有效的方式来开发和执行高性能计算任务。它的设计目标是提供一个灵活且可扩展的平台,以支持各种应用领域的高性能计算需求。最后,我们汇总子任务的结果,并计算平均值。最终,我们打印出计算得到的平均值。,用于计算给定数组的平均值。

2023-09-20 15:05:36 542 1

原创 Google Earth Engine (GEE) 是一个强大的云端地理信息处理平台,提供了全球陆地冰层空间数据的丰富资源和功能

通过 GEE,用户可以访问、分析和可视化全球范围内的陆地冰层数据,从而深入了解地球上冰川、冰盖和冰岛的动态变化。Google Earth Engine 是一个基于云计算的地理信息处理平台,集成了大量的遥感数据和地理空间数据,为用户提供了高性能的数据处理和分析能力。在 GEE 中,用户可以访问全球范围内的陆地冰层数据集,包括冰川覆盖、冰盖厚度、冰岛边界等信息,以及相关的时间序列数据。GEE 平台提供了丰富的陆地冰层数据集,用户可以通过代码访问这些数据。,其中包含了冰川覆盖数据的颜色映射。

2023-09-20 12:46:05 1391 1

原创 使用Python构建简单的矢量集合和进行矢量可视化

在本文中,我们将使用Python的GEE库(Google Earth Engine)来构建简单的矢量集合,并将其可视化。在本文中,我们将使用Python的GEE库(Google Earth Engine)来构建简单的矢量集合,并将其可视化。通过本文,您学会了如何使用Python的GEE库构建简单的矢量集合,并将其可视化到地图上。运行上述代码,将会显示一个地图,并在地图上可视化了创建的矢量集合。运行上述代码,将会显示一个地图,并在地图上可视化了创建的矢量集合。在上述代码中,我们首先创建了一个空的矢量集合。

2023-09-20 09:55:57 580 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除