使用Google Earth Engine和Sentinel数据集进行土地分类的案例

18 篇文章 ¥59.90 ¥99.00
本文详细阐述了如何利用Google Earth Engine(GEE)平台和Sentinel-2影像数据进行土地分类。首先,介绍了如何在GEE中导入和裁剪2019年的Sentinel数据。接着,选用随机森林算法作为分类器,结合训练数据进行土地分类。最后,展示了如何将分类结果进行可视化,以便理解与监测地表覆盖类型的变化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

土地分类是一项重要的地理信息任务,可以帮助我们理解和监测地表覆盖类型的变化。Google Earth Engine(GEE)是一个功能强大的云平台,提供了许多遥感数据集和分析工具,可以用于土地分类。本文将介绍如何使用GEE和Sentinel数据集进行土地分类,并提供相应的源代码。

  1. 数据准备
    首先,我们需要导入必要的数据集。在GEE中,我们可以使用Sentinel影像数据作为土地分类的输入。以下是导入Sentinel-2影像数据的代码:
// 导入Sentinel-2影像数据
var dataset = ee.ImageCollection('COPERNICUS/S2')
  .
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值