摘要:
计算机视觉领域中,目标检测是一个重要的研究方向。YOLO(You Only Look Once)系列模型是当前流行的实时目标检测算法之一。为了提高YOLOv7模型的精度,我们进行了一项改进实验,新增了mAP75数值的打印功能,以便更全面地评估模型的性能。本文详细介绍了实验设计和实现过程,并提供了相应的源代码。
-
引言
目标检测是计算机视觉中的重要任务之一,它涉及在图像或视频中识别和定位特定物体的过程。YOLO系列模型通过将目标检测问题转化为单次前向传播的回归问题,实现了实时目标检测的能力。然而,YOLOv7模型在一些复杂场景中仍存在精度不足的问题。 -
实验设计
为了提高YOLOv7模型的精度,我们进行了以下改进:
- 新增mAP75打印功能:mAP75是IOU阈值为0.75时的平均精度均值(mean Average Precision),它可以更全面地评估模型在较高IoU阈值下的性能。我们在模型训练和推理过程中,增加了对mAP75数值的计算和打印。
- 实验实现
我们使用PyTorch框架对YOLOv7模型进行了改进。首先,我们定义了模型结构和损失函数。然后,我们使用COCO数据集进行训练,并在测试集上进行评估。在训练和测试过程中,我们加入了对mAP75数值的计算和打印部分。
以下是我们对YOLOv7模型进行改进后的源代码示例:
# 定义模型结构
class YOLOv7(nn.Module):
def __init__(self, num_classes):
su