自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(73)
  • 收藏
  • 关注

原创 图计算与图数据库差异简析

图计算(图数据库)肇始于学术界对图论的研究,从最早的200多年前的欧拉的七桥问题演化出早期图论,再到后来的地图上色问题、20世纪60年代的随机图理论研究、多种最短路径算法,以及过去20年间随着大数据框架和理论发展而形成的各种社交图谱(图数据集)研究。但是,图计算(Graph Computing)与图数据库(Graph Database)之间的差异有很多,这是刚接触“图”的人不容易厘清的。尽管在很多情况下,图计算可以和图数据库混用、通用,但它们之间存在着很多的不同。图计算可以简单的等同于图处理框架(Gra

2021-11-05 18:09:29 20

原创 (2)探究业界云存储平台:Ceph vs. ScaleIO

在数据中心中,存储系统是管理员与IT部门最头痛的环节。因为历史的原因,五花八门的存储系统形成了一个又一个的信息孤岛(Silo),它们各自形成独立的HA与弹性设计,互不通用的监控系统与界面。有鉴于此,业界近些年的趋势开始推出统一存储(Unified Storage)产品来试图解决存储过度多样化而造成的管理与使用效率低下的问题(如之前讲过的SDS解决方案ViPR/CoprHD也可以看作一种纯软件的统一存储的解决方案)。Ceph (Technology - Ceph)就是这样一款SDS软件解决方案。它主要

2021-11-01 11:42:55 14

原创 探究业界云存储平台(1):开源的软件定义存储—CoprHD

在接下来的两章中,我将分别为大家介绍与分析三款软件定义存储解决方案:CoprHD、Ceph与ScaleIO,并对后两者进行性能比较分析。一、开源的软件定义存储—CoprHD了解开源的CoprHD(CoprHD),需要先了解EMC ViPR。ViPR是一款商用的、纯软件的软件定义存储解决方案,可将已有的存储环境转换为一个提供全自动存储服务的,简单易扩展的开放性平台,用来帮助用户实现全方位的软件定义数据中心。ViPR将物理存储阵列(不论是基于文件、块,还是对象的)抽象成一个虚拟的存储资源池, 以提供

2021-10-26 11:11:40 24

原创 如何改造传统应用为云应用?

随着云计算的深入发展,越来越多的应用是以一种云原生的方式被开发的。例如,在新的PaaS平台上开发的应用,我们通常也称之为第三平台应用或云原生应用(CNA=Cloud Native Application)。而业界普遍遇到的一个棘手的问题是还有相当大数量的传统的应用(即第二平台应用或Monolithic Application)如何去维护?例如新的CNA在云数据中心中,而传统应用通常跑在原有的数据中心中,它们对开发、测试与维护的要求不尽相同,自然也会带来不同的挑战。如何把传统应用改造为新型云生应用是我

2021-10-20 18:20:37 25

原创 大数据应用实践3:数据湖泊之海量视频分析

match path = (p:Person) - [{relation:"is"}] - (j:Job)wherep.name = "Areith" && j.name== "Chef"return path

2021-10-15 10:28:47 11

原创 人工智能(AI)从实验室到实际应用有何大不同?

第三代人工智能是2019-2021年间由中国人工智能之父、中科院院士清华大学张钹教授率先提出的。区别于第一代人工智能(1950-1980年代)着重于计算机推理运算;第二代人工智能(1990-当下)以机器学习与深度学习,广泛存在算法黑盒化、计算不可解释且算力浪费严重、计算效率低下等问题,第三代人工智能需要数据、知识、算法与算力四要素协同,注重算法白盒化可解释,以及算力的大幅提升。图计算(图数据库)被认为是一种典型的通过增强智能方式实现的稳健的、更贴近人类智能的——第三代人工智能技术。图:清华张钹院士专

2021-10-13 17:30:01 13

原创 在“图”中 微观长津湖战役

长津湖,这部国庆档最热门的电影,票房大卖,剧情热血。电影取材于于历史上发生于1950年11月27日在长津湖的战争,以第七穿插连的战斗经历为主线,切入中国人民志愿军第9兵团开赴朝鲜战场作战的历史时空。长津湖战役是战争史上最著名的战役之一,志愿军在东西两线同时大捷,收复了三八线以北的东部广大地区,一举扭转了战场态势,成为朝鲜战争的拐点,为最终到来的停战谈判奠定了胜利基础,同时,间接确立了冷战时期的美国外交政策;米国五星上将麦克阿瑟因此战而被原地解职。网络、文章、书籍……太多描写有关长津湖..

2021-10-12 19:05:40 88

原创 大数据应用实践2: IMDG应用场景

内存数据网格(In-Memory Data Grid)技术的出现是为了应对日益增长的数据实时处理性的需求8。其中最具代表性的IMDG解决方案当属Pivotal Gemfire(其开源版本为Apache Geode)。在了解Gemfire/Geode的主要适用场景前,大家只需要记住12306在上一次票务查询系统大规模系统迭代时采用的就是Gemfire的企业版,替换了之前的IBM DB2,让查询时间提升了近1000倍!是的,2013-14年之前的12306,随便查张票可能需要20秒或更久。用了内存网格计算架构后

2021-10-09 10:22:44 23

原创 大数据应用实践1:基于开源架构的股票行情分析与预测

股票市场行情分析与预测一直是数据分析领域里面的重头戏,确切地说IT行业的每一次重大发展的幕后推动者以及新产品(特别是高端产品)的最先尝试者都包含金融行业,特别是证券交易市场,它符合大数据的四大特征:交易量大、频率高、数据种类多、价值高。在本小节,我为大家介绍一种完全基于开源软件构建的大数据驱动的股票行情分析与预测系统的实现。通常我们认为在一个充分共享信息的股票市场内,股票价格的短期走向是不可预测的,因此无论是技术分析(Technical Analysis)还是基本面分析(Fundamental An

2021-09-29 10:59:16 54

原创 招聘| Ultipa2022届校园招聘全面开启

关于Ultipa01|我们做的事业非常前沿Ultipa正在创造世界最快、最直观、最易用的下一代图数据产品。Ultipa图数据库的目标不是yet another graph database, 我们坚信图计算与图数据库代表着数据库与大数据发展的未来。目前,Ultipa创研并已成功开发出业界高性能的图数据结构、IT架构与高并发图算法,性能远超同类产品,且已经在世界头部的金融客户的生产环境中部署上线了多套Ultipa实时高可用图数据库算力与应用系统。02|我们的团队专门塑造天才Ulti...

2021-09-26 17:58:27 8

转载 人物| 张钹院士:中国人工智能奠基者

开篇语《人民日报》海外版于2021年8月30日刊发了中国人工智能主要奠基者和发展推动者——张钹院士在人工智能领域奋斗不息、矢志不移、创新不止、诲人不倦的历程。以下全文转发:当前,全球科技创新进入空前密集活跃期,特别是新一代信息技术加速突破应用,推动新一轮科技革命和产业变革重构全球创新版图。人工智能作为新一代信息技术的战略重点之一,近年来获得长足进步,给经济社会发展产生了重大而深远的影响。近年来,中国在人工智能领域表现亮眼,已成为世界人工智能主要创新中心之一。根据《人工智能发展报告20

2021-09-10 12:16:39 39

原创 从SOA到MSA(下)

SOA的实现通常可分为四个层次,如下图所示:图:SOA频谱(Spectrum)(1)JBOWS(Just-Bunch-of-Web-Services)这是SOA实现的最初级阶段,通常是在IT部门而非业务部门主导下以一种近乎随机、非计划的模式生产出一堆以功能为导向的服务,而服务之间的协作、稳定性、可用性等通常难以保证。(2)面向服务的集成(Service-Oriented Integration)SOI是JBOWS的进阶模式,这种模式的特点是服务合同(Service Contrac

2021-09-09 14:11:13 14

原创 从SOA到MSA(上)

纵览云计算与大数据时代的各类技术框架与系统体系架构,它们的共同特征是注重可扩展性、敏捷性与弹性,以集群的整体业务(数据)处理能力及综合服务提供的能力来弥补单一节点的性能劣势,以及对因节点故障、上下线等因素的抗干扰能力强。如果我们再结合各种XaaS平台以及SDX(软件定义的一切)框架,它们的共性可以简单归纳为:分层抽象化架构,层与层之间通过服务来通信,底层向上提供可被调用的服务接口。以上两段话高度概括起来其实就是SOA(面向服务的架构=Service-Oriented Architecture)。

2021-09-08 12:00:18 25

原创 可扩展存储系统(下)

【书接上文】(3)SAN系统的扩展性SAN存储系统与NAS存储系统的主要区别并不是在底层存储阵列上,而是在与服务器的网络连接方式与默认通信协议支持上。SAN系统一般支持iSCSI、Fibre-Channel、Fiber-Channel-over-Ethernet等主流通信协议。NAS系统则主要支持NFS、CIFS等协议。以下图为例,Unified NAS(统一的NAS存储阵列)中的每个NAS机头具有连接到IP网络的前端以太网端口。前端端口提供客户端连接并服务于文件I/O请求。每个NAS机头都有后

2021-09-01 10:27:42 26

原创 可扩展存储系统(上)

存储作为数据中心的重要组成部分之一,由于相关硬件组件与存储操作系统的多样性和复杂性,如何在保证存储稳定、安全、可靠的同时,实现灵活扩展和自服务,一直是困扰数据中心全面云化的难题。如下图所示,常见的存储系统通常可分为直连存储系统(DAS)、网络连接存储系统(NAS)与存储网络系统(SAN)三大类。图: 存储系统的三大类针对这三类存储系统去实现扩展的方式各不相同,我们在下文中分别讨论一下如何对它们实现可扩展性。(1)DAS系统的扩展性DAS系统的扩展性通常通过软件的方式来实现,确.

2021-08-31 16:26:40 26

原创 可扩展数据库(下)

数据库层的扩展是典型云应用五层架构中的第四层,也是最复杂的一层(有人认为可扩展存储系统更为复杂,笔者以为,取决于业务应用模式。对于存在复杂交易处理类型的应用,其数据库层实现的挑战显然更高;而对于单纯的海量数据简单事件处理型应用,数据库层甚至不需要存在,而云存储层的实现则更为复杂)。数据库扩展大体有如下四类解决方案:·Scale-Up ·Master-Slaves(一主多仆)读代理模式·Master-Master模式 ·Sharding模式【书接上文】以下图中的分布式数据库为例,我们可以如

2021-08-24 11:46:54 22

原创 可扩展数据库(上)

数据库层的扩展是典型云应用五层架构中的第四层,也是最复杂的一层(有人认为可扩展存储系统更为复杂,笔者以为,取决于业务应用模式。对于存在复杂交易处理类型的应用,其数据库层实现的挑战显然更高;而对于单纯的海量数据简单事件处理型应用,数据库层甚至不需要存在,而云存储层的实现则更为复杂)。数据库扩展大体有如下四类解决方案:·Scale-Up·Master-Slaves(一主多仆)读代理模式·Master-Master模式·Sharding模式(1)Scale-Up:垂直扩展垂直扩展法

2021-08-23 15:09:55 21

原创 云应用、服务的“5层”架构

一套完整的云应用、服务架构通常可以分为5层。·负载均衡层(Load Balancing)·应用服务层(Application Server)·缓存服务层(Caching Server)·数据库服务层(Database Server)·云存储层(Cloud Storage)图:云应用的五层架构(1)负载均衡负载均衡层(Load-Balancing Layer,LB Layer)的实现是5层架构中最早面对用户的,也是相对最容易实现的。通常为了避免SPOF,至少设置两台LB

2021-08-19 14:03:48 34

原创 可扩展系统的“9不”原则和“5个”衡量维度

构建可扩展系统的目的是实现可扩展的应用与服务。首先我们了解一下可扩展应用与服务的“9不”原则。·不要完全依赖本地资源:数据必须实现云(网络)存储,Hadoop HDFS就是一个很好的例子,三份数据拷贝(同机架不同主机两份、跨机架第三份)以保证高可用性。·服务尽量避免强依赖性:服务的强依赖性指的是当B服务依赖于A,而A下线后直接导致B服务的下线。在第三平台的架构设计中我们应把B服务设计为当A不可用时,采用其他渠道继续提供服务,例如从CDN或缓存区中保存的数据继续提供服务,以此来提高用户体验(同时在

2021-08-17 11:16:40 30

原创 失联修复:让“躲猫猫”无处可藏

贷后失联找人难,催收问题怎么解决?强制执行老赖玩儿消失,怎么做到“疏而不漏”?·银行金融机构贷款后,逾期无法通过预留联系方式联系到贷款人;·法院/仲裁公告送达场景:解决诉讼中 “送达难”问题;执行无法联系到当事人。……一 | 机构面对失联情况的现实痛点—— 现实场景一:贷款逾期,银行产生坏账、烂账央行数据显示,截至2020年6月底,我国信用卡逾期金额高达854亿元人民币,,每年都有大量的人无法按时偿还信用卡,导致逾期的现象产生。导致该问题的出现,有的是因为遇到资金困难,通过信用卡或

2021-08-11 12:02:28 168

原创 资源管理、高可用与自动化(下)

云计算本质上是提供服务的多个模块的API互相连接的程序和平台的组合。在软件定义的云计算中心中,计算、网络、存储的实现都演化为面向服务(一切即服务)的模型,各个模块的集中控制器向外提供API,使模块具备了可编程能力,而且控制器使得各个模块具备了中央控制的功能,使得自动化的工作流能够集中部署,集中控制。而且,随着各个模块的控制器的控制接口向开放性、灵活性和标准化方向发展,自动化工作流也会朝标准化方向发展,使工作流能够实现跨平台,跨厂商使用。以软件定义的存储解决方案Ceph与ViPR/CoprHD为例,两

2021-08-04 16:55:55 30

原创 资源管理、高可用与自动化(中)

比资源管理更贴近最终用户的是一系列的服务,可以是普通的邮件服务、文件服务、数据库服务,也可能是针对大数据分析的Hadoop集群等服务。对于配置这些服务来说,软件定义数据中心的独特优势是自动化。例如VMware的vCAC(vCloud Automation Center)就可以按照管理员预先设定的步骤,自动部署几乎任何传统服务,从数据库到文件服务器。绝大多数部署的细节都是预先定义的,管理员只需要调整几个参数就能完成配置。即使有个别特殊的服务(例如用户自己开发的服务),没有事先定义的部署流程,也可以通过图形化的

2021-08-02 14:12:41 24

原创 资源管理、高可用与自动化(上)

当服务器、存储和网络已经被抽象成虚拟机(含容器)、虚拟存储对象(块设备、文件系统、对象存储)、虚拟网络,这些虚拟化资源从数量上和表现形式上都与硬件有了明显的区别。这个时候,数据中心至多可以被称为“软件抽象”的,但还不是软件定义的。因为各种资源现在还无法建立起有效的联系。要统一管理虚拟化之后的资源,不仅仅是将状态信息汇总、显示在同一个界面,更进一步的,需要能够用一套统一的接口,集中管理这些资源。例如VMware的vCenter和vCloud Director系列产品或Amazon AWS的Management

2021-07-28 17:35:39 10

原创 反欺诈:一场“猫鼠”游戏的博弈

在金融业务中,反欺诈(欺诈检测)是非常重要的风控手段之一,目的是防止不法分子利用虚假信息窃取他人财产。《逍遥法外》这部电影里,饰演男1号的莱昂纳多就是个诈骗高手——非法印制支票、骗取银行财产……十八般诈骗手艺行云流水、技艺高超……图:影片截图:《逍遥法外》又名《猫鼠游戏》的主人公原型叫弗兰克·W·阿巴内尔,这部影片改编自他的自传小说《有种来抓我:最非凡骗子的真实传奇故事》当然,并不是谁都可以成为神骗子,银行为了杜绝包括伪造支票或使用被盗的信用卡等被欺诈的风险的发生,欺诈检测会贯穿整个..

2021-07-26 18:39:25 92

原创 软件定义的网络(下)

我们在这里对这两种SDN实现方案分别做个简单描述。(1)以网络为中心的SDN以网络为中心的SDN的技术核心是OpenFlow协议,OpenFlow技术最早由斯坦福大学于2008年提出,它是一种通信协议,用来提供对网络设备诸如交换机和路由器的数据转发平面(Data Forwarding Plane)的访问控制。OpenFlow旨在基于现有的TCP/IP技术条件,以创新的网络互联理念解决当前架构在面对新的网络业务和服务时所产生的各种瓶颈。OpenFlow的核心思想很简单,就是将原本完全由交换机/

2021-07-21 10:32:39 55

原创 软件定义的网络(中)

SDN的出现打破了传统网络设备制造商独立而封闭的控制面结构体系,将改变网络设备形态和网络运营商的工作模式,对网络的应用和发展将产生直接影响。从技术层面和应用层面来看,SDN的特点主要体现在以下几个方面:· 数据平面与控制平面的分离,在控制面对网络集中控制。通过控制面功能的集中以及数据面和控制面之间的接口规范,实现对不同厂商的设备进行统一、灵活、高效的管理和维护。数据面和控制面的分离,并且支持集中控制,就是把原来IP网络设备上的路由控制平面,集中到一个控制器上,网络设备根据控制器下发的控制表项进行

2021-07-19 11:18:08 21

原创 软件定义的网络(上)

数据中心作为IT资源的集中地,是数据计算、网络传输、存储的中心,为企业和用户的业务需求提供IT支持。网络作为提供数据交换的模块,是数据中心中最为核心的基础设施之一,并直接关系到数据中心的性能、规模、可扩展性和管理性。随着云计算、物联网、大数据等众多新技术和应用的空前发展以及智能终端的爆炸式增长,以交换机为代表的传统网络设备为核心的数据中心网络已经很难适应企业和用户对业务和网络快速部署、灵活管理和控制,以及开放协作的需求,网络必须能够像用户应用程序一样可以被定制和编程,也就是软件定义的网络,也叫SDN

2021-07-09 14:10:56 87 2

原创 软件定义的存储

软件定义存储源于VMware公司于2012年提出的软件定义的数据中心(SDDC)。存储作为软件定义的数据中心不可或缺的一部分,其以虚拟化为基础,但又不仅限于虚拟化。存储虚拟化一般只能在专门的硬件设备上应用,很多设备都是经过专门的定做才能够进行存储虚拟化。而软件定义存储则没有设备限制,可以简单地理解为存储的管理程序(类似于软件定义计算中虚拟机管理程序VMM)。软件定义存储是对现有操作系统和管理软件的一个结合,能够完整实现我们对存储系统的部署、管理、监控、调整等多种要求,可以给我们的存储系统带来敏捷、高可用

2021-07-07 15:14:06 71

原创 软件定义的计算

虚拟化是软件定义的计算最主要的解决途径。虽然类似的技术早在IBM S/360系列的机器中已经出现过,但是真正“平民化”,走入大规模数据中心还是在VMware推出基于x86架构处理器的全虚拟化(Full-Virtualization)产品之后。随后,还有Microsoft Hyper-V、Citrix XEN、Redhat KVM(Kernel-based Virtual Machine)、Sun VirtualBox(现在改叫Oracle VM VirtualBox)、QEMU(Quick EMUl

2021-07-05 10:48:11 41 2

转载 人人都在谈的图数据库到底是个啥?

图数据库,如果是刚接触的人,可能会被其字面意思所误导。其实,图数据库并不是指存储图片、图像的数据库,而是指存储图这种数据结构的数据库。那么图又是什么呢?近些年来,在大数据处理过程中有一种被广泛提及和使用的数据库,那就是图数据库。那么图数据库究竟是什么呢?图数据库,如果是刚接触的人,可能会被其字面意思所误导。其实,图数据库并不是指存储图片、图像的数据库,而是指存储图这种数据结构的数据库。那么图又是什么呢?什么是图我们通过下面的例子来认识一下。东汉末年,孙权、刘备联军曾在赤壁一带以火攻敌

2021-07-01 11:52:18 14

原创 浅谈软件定义的必要性有哪些?

节点设备太多、设备利用率太低、 应用设备间迁移太困难、存储需求增长得太快……应用的发展,推动了IT基础架构的发展,特别是承载着云计算与大数据应用的规模化数据中心的发展,需要面临的挑战实在太多了。于是虚拟化技术重新回到大众视野中。图:软件定义的计算演进在计算机发展的早期(20世纪60年代),虚拟化技术其实就已经出现了,当时是为了能够充分利用昂贵的大型主机的计算资源。数十年后,虚拟化技术再一次变成人们重点关注的对象,依然跟提高资源的利用效率有密不可分的关系。而且这次虚拟化技术不仅在计算节点上被广泛应

2021-06-30 14:44:12 38 2

原创 大数据四大阵营之流数据处理阵营

一|大数据的四大阵营是什么?二|浅谈流数据处理阵营数据流管理来自于这样一个概念:数据的价值随着时间的流逝而降低,所以需要在事件发生后尽快进行处理,最好是在事件发生时就进行处理(即实时处理),对事件进行一个接一个处理,而不是缓存起来进行批处理(如Hadoop)。在数据流管理中,需要处理的输入数据并不存储在可随机访问的磁盘或逻辑缓存中,它们以数据流的方式源源不断地到达。数据流通常具有如下特点:· 实时性(Real-time):数据流中的数据实时到达,需要实时处理。· 无边界(U..

2021-06-25 19:09:07 103 1

原创 大数据四大阵营之MPP阵营

今天我们来看看MPP类型数据库。和MapReduce类似,两者都采用大规模并行处理架构来对海量数据进行以大数据分析为主的工作,不同之处在于MPP通常原生支持并行的关系型查询与应用,不过这一点,Hadoop阵营也在逐渐通过在HDFS之上提供SQL查询接口来支持查询,甚至包括关系型查询。MPP数据库通常具有如下特点:· 无共享架构(Shared-Nothing):每台服务器有独立的存储、内存及CPU,可以动态增删节点 ·分区(Partitioning):数据分区可以跨多节点,通过分布式查询优化提高系.

2021-06-16 15:59:17 236

原创 大数据四大阵营之OLAP阵营

OLAP阵营主要有两大主流方向:一个是基于MapReduce而构建的Hadoop生态圈一个是MPP(大规模并行)数据库阵营不过MPP数据库通常兼具OLAP与OLTP的能力,所以老孙仍旧把MPP数据库与OLAP类型大数据系统并列在OLAP阵营。Hadoop的整体架构其实非常简单,用公式表达就是:Hadoop=HDFS+MapReduce其中,HDFS 负责分布式存储MapReduce 负责分布式计算HDFS分布式文件系统的设计核心理念(设计目标)有三条:(1)可以扩展到数以千计的.

2021-06-08 10:45:51 43

原创 大数据四大阵营之OLTP阵营(下)

[书接上篇]NewSQL数据库下面我们聊一聊颠覆了CAP“理论”的NewSQL类系统(兼具可扩展性、数据可用性与一致性)。确切地说NewSQL可以兼顾OLTP+OLAP,但在一般分类上,我们还是主要突出了它的交易、事务处理对ACID的支持上,因此归为OLTP阵营。最早的NewSQL系统是H-Store15,由美国东海岸的四所大学(Brown、CMU、MIT和Yale)在美国国家科学基金会、加拿大工程与研究委员会及Intel大数据科技中心的资助下联合开发,于2007年面世。H-Store的意义在于它真的

2021-06-02 15:00:55 41

原创 大数据四大阵营之OLTP阵营(中)

书接上篇:大数据四大阵营之OLTP阵营(上)](https://blog.csdn.net/Ultipa/article/details/117294528)​(4)图数据库型NoSQL – 从Neo4J到Ultipa Graph图数据库这一概念对于行外人士而言具有比较大的误导性,很多人乍一听会以为是图像处理数据库,而不会想到这里“图”是图论的“图”,也许当时命名这一类的数据库时用Topo Graph(可翻译为拓扑数据库)会更准确一些。图:哥尼斯堡大桥问题。莱昂哈德·欧拉于1736年发表的《哥尼.

2021-05-31 12:27:06 49 1

原创 沸点| 高性能图数据库Ultipa获2100万美金A轮融资

【转载36氪报道】高性能图数据解决方案提供商Ultipa近日获得2100万美金A轮融资,由某知名主权基金领投,天使轮投资方招银国际继续跟投。融资资金主要将用于销售及解决方案的团队搭建以及体系完善,加快市场教育及占领速度。Ultipa 创立于2019年,核心团队来自微软、惠普、EMC、阿里巴巴等世界知名跨国企业。创始人兼CEO孙宇熙是位连续创业者,拥有20余年硅谷和北京跨国公司与创业公司经验,同时也是世界级高性能系统及大数据与云计算专家,曾任Allhistory.com的首席执行官、EMC CCOE首席技.

2021-05-27 16:34:19 42

原创 大数据四大阵营之OLTP阵营(上)

**一 | 大数据的四大阵营是什么?**· OLTP(在线事务、交易处理):RDBMS、NoSQL、NewSQL· OLAP(在线分析处理):MapReduce、Hadoop、Spark等·MPP(大规模并行处理):Greenplum、Teradata Aster等· 流数据管理:CEP/Esper、Storm、Spark、Stream、Flume等二 | OLTP阵营OLTP阵营可以分为:·传统的关系型数据库·NoSQL·NewSQL三类不同的解决方案。在本篇文章中,我们.

2021-05-26 15:57:39 60 2

原创 浅谈大数据如何应用?

大数据所面临的五大问题中最后一个是大数据应用,也是大数据问题的具象和最终展现形式。如果用更高度的概括来表述大数据的生命周期,可以归纳为:大数据来源+大数据技术+大数据应用。三者缺一不可、彼此相承,见下图:**一|大数据应用特点**大数据应用通常被划分为第三平台应用,以此来区别于第二平台的应用。大数据应用有如下四大特点:· 弹性(Elasticity)· 敏捷性(Agility)· 数据为中心(Data-centric)·应用服务化(As-a-Service)(1)应用弹性大数据.

2021-05-20 10:29:53 257

原创 浅谈大数据如何管理与分析

构建面向海量信息的大数据管理平台,其本质上是要实现一套可软件定义的数据中心来通过对下层的基础架构进行有效的管理(存储、网络、计算以及相关资源的调度、分配、虚拟化、容器化等)以满足上层的业务与应用需求,并通过软件的灵活性与敏捷性来实现高ROI(Return-on-Investment,投入产出比)。此前,老孙在《谈云》系列和《解密大数据》的前几讲中,均提到过大数据与云计算之间相辅相成的关系,这一点也充分体现在它们两者的技术栈对应的关系上,下图所示。图:云计算+大数据体系架构技术栈大数据存储对应于云计.

2021-05-17 15:18:11 318 6

空空如也

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除