一.题目描述
给你一根长度为n的绳子,请把绳子剪成整数长的m段(m、n都是整数,n>1并且m>1,m<=n),每段绳子的长度记为k[1],…,k[m]。请问k[1]x…xk[m]可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
输入描述:
输入一个数n,意义见题面。(2 <= n <= 60)
输出描述:
输出答案。
示例1
输入
8
输出
18
二.代码(C++)
class Solution {
public:
int cutRope(int number) {
if(number==1)
return 0;
if(number==2)
return 1;
if(number==3)
return 2;
int *dp = new int[number+1];
dp[1] = 1;
dp[2] = 2;
dp[3] = 3;
for(int i=4;i<=number;i++)
{
for(int j=1;j<i;j++)
{
dp[i] = max(dp[i], (dp[i-j]*dp[j]));
}
}
return dp[number];
}
};
三.提交记录
四.备注
动态规划类题目。长度为n的绳子,最大乘积设为f(n),则f(n)应该是f(n-j)*f(j)中的最大项,(j=1:n-1)。