不行了 不行了 10发才过!!这题太恶心了!!
题意
给出n个长度为3的序列n最大为200000,根据这些序列求解出密码串,一个序列出现的次数代表此序列在密码串中的出现次数。
解体思路
根据做题经验,感觉这个题是个有向图的欧拉路径问题,实际上也就是,感觉一下就能想明白吧。因此第一步先判断是否连通,我用的是并查集。第二步判断连通图是否存在欧拉路径。第三步,如果存在,打印出路径,使用深搜。
注意事项
1.输入的是字符串,我们建图的时候,要先哈希成数字,重点是由于空间及时间复杂度的限制,最好哈希成最小的63进制,其他进制是否超时不清楚。
2.搜索路径的时候,需要一个小优化就是已经没有用的边就不需要遍历,2000MS+到78MS的蜕变。
AC代码:
#include <map>
#include <string>
#include <vector>
#include <sstream>
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
using namespace std;
const int seed = 63;
int base[2] = {1, 63};//哈希成63进制
int path[200010];
int father[5010];
char s[200010][5];
int scr, des, n, top;
int I[5010],O[5010],vis[200010],c[5010];
int Get(char c){//字符转化为数字
if(c >= 'a' && c <= 'z') return c - 'a' + 1;
if(c >= 'A' && c <= 'Z') return c - 'A' + 27;
return c - '0' + 53;
}
void Init(){
for(int i=0; i<5010; i++)
father[i] = i;
}
int Find(int x){
if(x != father[x])
father[x] = Find(father[x]);
return father[x];
}
vector <pair <int, int> > vt[5010];//邻接表
vector <int> ans;
void DFS(int u){
for(int i=c[u]; i<vt[u].size(); i=c[u]){
c[u]++;
if(!vis[vt[u][i].second]){
vis[vt[u][i].second] = 1;
DFS(vt[u][i].first);
path[top++] = vt[u][i].second;
}
}
}
int main(){
Init();
scanf("%d",&n);
for(int i=0; i<n; i++){
scanf("%s",s[i]);
int v = (Get(s[i][1]))*base[1] + (Get(s[i][2]))*base[0];//hash
int u = (Get(s[i][0]))*base[1] + (Get(s[i][1]))*base[0];//hash
I[v]++;
O[u]++;
vt[u].push_back(make_pair(v, i));//建边
father[Find(v)] = Find(u);
}
int cnt = 0;
for(int i=0; i<5000; i++)//判断是否连通
if(I[i] + O[i] && father[i] == i) cnt++;
if(cnt > 1){
puts("NO");
return 0;
}
int cnt1 = 0, cnt2 = 0, cnt3 = 0;
for(int i=0; i<5000; i++){//出度 入度是否满足
if(I[i] == O[i]) continue;
if(I[i] - O[i] == 1) cnt1++, des = i;
else if(O[i] - I[i] == 1) cnt2++, scr = i;
else cnt3++;
}
if(cnt3){
puts("NO");
return 0;
}
if(cnt1 == 1 && cnt2 == 1) DFS(scr);//有两个点abs(出度-入度)为1
else if(cnt1 == 0 && cnt2 == 0) DFS((Get(s[0][1]))*63 + (Get(s[0][2])));//所有点出度=入度
else{
puts("NO");
return 0;
}
puts("YES");
printf("%s",s[path[top-1]]);
for(int i=top-2; i>=0; i--)
printf("%c",s[path[i]][2]);
printf("\n");
return 0;
}