poj 3261 Milk Patterns

单串的最长可重叠子串

题意

给出一个牛n天的产奶量,在这个序列中找出最长的重复子串。

解题需注意

本题产奶量最大为1000000,采用基数排序复杂度O(1000000),会跑得很慢,据说可以AC,但是为了追求速度我们这里采用离散化+基数排序解决这个问题。详见代码中的注释。除此之外本题的思路如下:

我们可以通过二分子串的长度k来做,这时题目变成了是否存在重复次数至少为K次且长度不小k的子串。首先我们可以把相邻的所有不小于k的height[]看成一组,这组内有多少个字符串,就相当于有多少个长度至少为k的重复的子串。之所以可以这么做,是因为排名第i的字符串和排名第j的字符串的最长公共前缀等于height[i],height[i+1],...,height[j]中的最小值,所以把所有不小于k的height[]看成一组就保证了组内任意两个字符串的最长公共前缀都至少为k,且长度为k的前缀是每个字符串共有的,因此这组内有多少个字符串,就相当于有多少个长度至少为k的重复的子串(任意一个子串都是某个后缀的前缀)。

代码君

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int MAX = 20010;

int n,k;
int s[MAX],ss[MAX];  
int sa[MAX],rank[MAX],height[MAX];
int wa[MAX],wb[MAX],wv[MAX],ws[MAX];

int cmp(int *r,int a,int b,int l)  {  
    return r[a] == r[b] && r[a+l] == r[b+l];  
}  
void fun(int *r, int n, int m){                                
    int i,j,p,*x = wa, *y = wb, *t;  
    for(i = 0; i < m; i ++) ws[i] = 0;  
    for(i = 0; i < n; i ++) ws[x[i] = r[i]] ++;  
    for(i = 1; i < m; i ++) ws[i] += ws[i-1];  
    for(i = n-1; i >= 0; i --) sa[--ws[x[i]]] = i;  
    for(j = 1, p = 1; p < n; j*=2, m = p){  
        for(p = 0, i = n-j; i < n; i ++) y[p++] = i;  
        for(i = 0; i < n; i ++)
            if(sa[i] >= j)
                y[p++] = sa[i]-j;  
        for(i = 0; i < n; i ++) wv[i] = x[y[i]];  
        for(i = 0; i < m; i ++) ws[i] = 0;  
        for(i = 0; i < n; i ++) ws[wv[i]] ++;  
        for(i = 1; i < m; i ++) ws[i] += ws[i-1];  
        for(i = n-1; i >= 0; i--) sa[--ws[wv[i]]] = y[i];
            
        for(t = x, x = y, y = t, p = 1, x[sa[0]] = 0, i = 1; i < n; i ++)  
            x[sa[i]] = cmp(y, sa[i-1], sa[i], j) ? p-1 : p++;  
    }  
}  

void calheight(int *r, int n){  
   int i, j, k=0;  
   for(int i=1; i<=n; i++)  
       rank[sa[i]] = i;        
   for(int i=0; i<n; i++){
       if(k) k--;
       int j = sa[rank[i]-1];
       while(r[i+k] == r[j+k]) k++;
       height[rank[i]] = k;
    }   
}  
//以上为求sa和height的模板
bool check(int mid){
	int cnt = 1;
	for(int i=2; i<=n; i++){
		if(height[i] >= mid){//按照height分组
			cnt++;
			if(cnt >= k) return true;
		}
		else cnt = 1;
	}
	return false;
}

void solve(){//二分长度,因为答案具有连续性
	int l = 1, r = n, ans;
	while(l <= r){
		int mid = (l + r) >> 1;
		if(check(mid)){
			ans = mid;
			l = mid + 1;
		}
		else r = mid - 1;
	}
	printf("%d\n",ans);
}

int main(){
	int newn;
	scanf("%d%d",&n,&k);
	for(int i=0; i<n; i++){
		scanf("%d",&s[i]);
		ss[i] = s[i];
	}
	sort(ss, ss+n);
	newn = unique(ss, ss+n) - ss;//离散化后的基数排序的范围
	for(int i=0; i<n; i++)//离散化
		s[i] = lower_bound(ss, ss+newn, s[i]) - ss + 1;//用排序后元素所在的位置代替元素本身的大小,这样不改变元素之间的大小关系及各种性质且缩小了元素的范围
	s[n] = 0;
	fun(s, n+1, newn+1);
	calheight(s, n);
	solve();
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值