Hadoop | MapReduce学习笔记 | JavaAPI更换切片机制 | CombineTextInputFormat 切片 | 词频统计案例

本文介绍了如何在Hadoop MapReduce中使用CombineTextInputFormat优化小文件处理,通过调整虚拟存储切片最大值提高效率。并提供了一个词频统计的完整案例,包括Mapper、Reducer和Driver驱动类的关键实现。
摘要由CSDN通过智能技术生成

一、参考资料


视频链接

二、运行环境


  • windows 10
  • JDK 8
  • Hadoop 3.1.3 windows版
  • IDEA

三、CombineTextInputFormat 切片机制


Hadoop框架默认的TextInputFormat切片机制是对任务按文件规划切片,不管文件多小,都会作为一个单独的切片,都会交给一个MapTask执行,当处理大量小文件时,效率会比较低。

CombineTextInputFormat切片机制作用域小文件过多的场景,可以将多个小文件从逻辑上规划到一个切片中,从而实现多个小文件交给一个MapTask处理。

虚拟存储切片最大值的设置:

CombineTextInputFormat.setMaxInputSplitSize(JOB, 4194304); // 4 MB

注:虚拟存储切片最大值最好根据实际的小文件大小情况来设置具体的值

切片机制:

生成切片过程包括:虚拟存储过程和去切片过程两部分

四、词频统计


4.1 Mapper

package com.uni.combineTextInputFormat;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/** 词频统计
 * <KEYIN, VALUEIN, KEYOUT, VALUEOUT>
 * KEYIN , map 阶段输入key的类型: LongWritable
 * VALUEIN, map 阶段输入value的类型: Text
 * KEYOUT, map 阶段输出vkey的类型:Text
 * VALUEOUT, map阶段输出的value类型:IntWritable
 */
public class WordCountMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
   
    // 放在上面声明防止在循环里多次创建对象,浪费空间
    private Text outKey = new Text();
    private IntWritable outValue = new IntWritable(1);
    @Override
    
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值