此次作业为作者课设内容,发表出来供大家参考以及交流,有什么问题咱们也可以交流,我对遥感方面的学习很浅薄片面,正在努力往深层次学习。
此次课设做的很笼统,也不属于浅显易懂的,如果有那些步骤不明白,可以私信或者评论我,我尽力做到最好,感谢观看。
一、课程设计的研究现状、目的与意义
随着遥感技术的发展与成熟,遥感技术在各个领域的应用越来越广泛。遥感技术正朝着定量化、智能化、动态化、网络化、实用化等方向发展,随着遥感数据获取手段的加强,需要处理的遥感信息急剧增加。遥感技术正在进入一个能够快速准确地提供多种对地观测海量数据以及应用研究的新阶段,有达到一个新的高潮。
遥感图像分类在遥感图像处理中就是一个很重要的方向,根据遥感图像自身的特点使计算机对遥感图像按照一定的意义进行自动的分类处理,将使人们在面对海量的遥感数据时更方便的进行筛选以及分析应用。因而,不断有遥感科学领域研究者在图像分类的算法的借鉴,改进和创新中探索。
加深理解和巩固遥感的相关知识;培养运用ENVI软件独立分析问题、解决问题的实际工作能力;培养良好的工作习惯和科学素养,为今后工作打好基础。
更大加深对遥感相关知识的认知,以及对遥感图像处理软件的操作熟练度的掌握。无论以后是考研还是从事相关一类的工作,都为此打下坚厚的基础。
二、ENVI系统介绍
ENVI是遥感科学家用交互式数据语言开发的一套功能强大的遥感图像处理软件,能够有效的从遥感影像中提取各种目标信息。
自 ENVI5.0 版本开始,ENVI 采用了全新的软件界面,从整体上增强了用户体验,ENVI5.3 延续了ENVI5 的界面风格,对图标做了更现代化的设计。启动 ENVI5.3,如图所示,包括菜单项、工具栏、图层管理、工具箱、状态栏几个部分组成。
三、遥感图像预处理
3.1 选取研究区域
此次图像实在地理空间数据云网站下载的,可以选定区域下载。
利用全国县级数据导出所要求的地区的shp文件,进行对图像区域操作。
3.2 辐射定标
将传感器记录的电压或数字量化值(DN)转换成绝对辐射亮度值(辐射率)的过程,或者转换与地表(表观)反射率、表面(表观)温度等物理量有关的相对值的处理过程。消除传感器本身的误差,确定传感器入口的准确辐射值。对于一般的线性传感器,定标通过一个线性关系式完成数字量化与辐射亮度值的转换:
L=Gain*DN+Offset
在ENVI中打开实验数据利用ENVI自带的定标工具进行定标,获取辐射亮度或反射率。
辐射定标过程中可以仅对某一局部地区进行定标,此次课设是仅对唐海县地区进行辐射定标。
利用表观反射率类型定标,定标类型表观反射率 Reflectance,定标表观大气反射率的计算公式:
ρ_p=(πLd^2)/(ESUN*〖cos〗_(θ_s ) )
L:辐射亮度值
d:天文单位的日地距离
ESUN:太阳表观辐射率均值
θ_s:以度为单位的太阳高度角。
生成辐射定标后的图像,比对辐射定标前后图像的差别,如图,左图为原图像,右图为辐射后图像。
由图可以看出辐射定标后遥感图像的亮度灰度值转换为绝对亮度值,显示的地物更容易操作观察了。
3.3 大气校正
将辐射亮度或者表观反射率转换为地表实际反射率,目的是消除大气散射、吸收、反射引起的误差。基本原理:首先估计大气对地表热辐射的影响,然后把这部分大气影响从卫星传感器所观测到的热辐射总量中减去,从而得到地表热辐射强度,再把这热辐射强度转化为相应的地表温度。
利用Flaash大气校正。FLAASH校正文件的路径中心点经纬度Scene Center Location自动获取;其对应的传感器高度以及影像数据的分辨率自动读取;设置唐海县的地面高程数据:0.001km;影像生成时的飞行过境时间(可以从元文件“_MTL.txt”中找到),大气模型参数选择,根据成像时间和纬度信息选择,参考图进行选择。
算法基本原理:FLAASH是基于太阳波普范围内和平面朗伯体,在传感器接收出接受的像元光谱辐射亮度公式为:
L=((Aρ)/(1-ρ_eS))+((Bρ)/(1-ρ_eS))+(L_α)
L:传感器处像元接受到的总辐射亮度
S:大气球面反照率
式中的所有变量都与波段有关。FLASSH中气溶胶厚度的反演应用了Kaufman提出的暗目标法。Kaufman在大量的实验中,2100nm的暗目标反射率与660nm暗目标反射率之间存在稳定的比值关系,利用上式以及一系列能见度范围可以反演出气溶胶光学厚度。
经过FLAASH校正的影像基本去除了空气中水汽颗粒等因子的影响,植被的波谱曲线趋于正常,如图,大气校正前的植被波普曲线(左),大气校正后的植被波普曲线(右)。完成后会得到反演的能见度和水汽柱