毕业设计论文 基于遥感影像的道路材质信息提取方法研究

人是21届毕业生 毕业论文选择的是遥感影像处理方面的,基于遥感影像的道路材质信息提取方法研究

下面是我的毕业论文,,可以参照浏览。可能部分为内容出现乱码的情况,大量图片无法显示,这里附上原件,链接:https://pan.baidu.com/s/1d4PzL52gcSrhe12BobFUhQ
提取码:t9c6
后期如果需要,可以应读者要求,会把做毕设过程中参考的文献,论文,操作步骤都整理出来。

本科毕业论文

基于遥感影像的道路材质信息提取方法研究

姓 名 某某某

学 号 000000000000

院 系 XXXXXXX学院

专 业 XXXXXXX专业

指导教师 某某某

二〇二一年六月三日

学位论文原创性声明

本人所提交的学位论文基于遥感影像的道路材质信息提取方法研究,是在导师的指导下,独立进行研究工作所取得的原创性成果。除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中标明。

本声明的法律后果由本人承担。

论文作者(签名):XXX 指导教师确认(签名):XXX

2021年6月3日 2021年6月3日

学位论文版权使用授权书

本学位论文作者完全了解华北理工大学有权保留并向国家有关部门或机构送交学位论文的复印件和磁盘,允许论文被查阅和借阅。本人授权华北理工大学可以将学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其它复制手段保存、汇编学位论文。

保密的学位论文在_______年解密后适用本授权书。

论文作者(签名): XXX 指导教师(签名):XXX

2021年6月3日 2021年6月3日

摘 要

遥感影像随着社会的快速发展,所包含的地物信息越来越丰富。道路信息作为研究地物中一个重要的参数,其中道路材质,也相应成为遥感影像的一个重要发展参照目标。道路材质信息类型的识别,对道路的分析以及道路可通行性来说具有重大意义,故遥感影像的道路材质信息的提取研究方法也逐渐发展开来。本文基于GF-2号遥感影像,利用ENVI
5.3
平台采用面向对象规则制定对曹妃甸部分区域影像的道路材质信息进行提取。利用地物光谱特征、几何特征、纹理特征等多种特征相结合分析不同材质道路在各个波段的信息,避免同谱异物和“椒盐现象”的发生,进而确定多层次规则,完成对道路材质信息的提取。基于实地考察数据,结合实际道路类型对分类提取结果进行二次修正。对最后结果进行精度评价分析,研究结果表明基于规则面向对象的分类提取结果的总体精度达到92.2701%和Kappa系数达到0.8534,完全达到预期结果,能够清晰提取出来不同道路类型。此方法的应用对道路的建设规划有重大意义。

关键词:光谱特征;纹理特征;面向对象;基于规则;精度评价

ABSTRACT

目 录

第1章 绪论 4

1.1 选题背景 4

1.2 国内外研究现状 4

1.3 论文研究内容与结构安排 6

1.3.1 论文主要工作 6

1.3.2 论文结构安排 6

1.4 本章小结 7

第2章 研究区介绍与数据预处理 8

2.1 研究区区域概况 8

2.2 数据来源与获取 8

2.3 GF-2号影像数据预处理 9

2.3.1 辐射定标 10

2.2.2 大气校正 11

2.2.3 正射校正 12

2.2.4 图像融合 13

2.4 最佳波段组合 14

2.5 本章小结 16

第3章 道路材质信息提取过程 17

3. 1 最优分割尺度 17

3.2 纹理特征 18

3.3 光谱特征 21

3.4 基于面向对象对道路材质的提取 23

3.4.1 裸土道路的提取 23

3.4.2 沥青道路的提取 24

3.4.3 铁路的提取 25

3.4.4 水泥道路的提取 26

3.5 实地考察验证及修正 27

3.6 本章小结 29

第4章 道路材质提取结果及精度分析 30

4.1 道路材质信息提取结果 30

4.2 精度评价方法 31

4.3 精度评价结果 32

4.4 本章小结 33

第5章 结论与展望 34

5.1 结论 34

5.2 展望 34

参考文献 36

致谢 38

第1章 绪论

1.1 选题背景

随着社会的持续发展,遥感卫星获取的影像已逐渐发展成为对地观测系统的数据来源。遥感技术获取的目标地物影像的分辨率程度呈上升趋势,所获取的地物包含的信息更加丰富,对其中的地物信息进一步提取与处理变得尤为重要相对于遥感应用的主要研究方向,但是在获取高分辨率影像的同时,各种干扰因素随之而来,背景干扰,系统噪音、环境因素等的处理为高分遥感图像的处理带来了挑战。道路,作为经济发展的命脉,更是不同地区沟通的重要手段。基于“要想富,先修路”的理念,交通道路是交通要塞组成的必不可少的部分,道路信息的提取也相应成为研究热点。为了适应道路需求,新型道路建筑材料更是层出不穷,导致现在对道路材质信息的搜集研究方法也逐渐受到重视,已有大量的学者针对提取道路材质信息的提取方面做了大量的工作及实验,并且取得了一定的实验。

交通道路的飞速发展,道路的规划与建设顺应潮流的发展,已经遍布各个角落,机动化水平快速提高,同样造成了道路的错综复杂。我国相对于其他发达国家来说,我国的道路建设起步较晚,但发展速度尤为快速。在道路发展建设初期,“本是没有路,走的人多了也便成了路”,那个年代道路相对单一,道路材质一般有裸土,木制材料两种。随着经济发展,道路建设完善,错综复杂,又因我国地势主要分三大阶梯状,西高东低,这一系列情况导致道路分布情况复杂。城市道路、山区道路、乡村道路的各个材质建设,分布情况,复杂程度更是也不尽相同

因此,在遥感技术未成熟时,道路的分布、材质信息的提取需要由人工进行采集,在如此庞大的土地和错综复杂的道路分布上去采取数据,无异于是巨大的工作量,需要浪费巨大的人力资源和财力。在如此背景下,对遥感影像道路信息的提取发展成为热点研究方向之一。作为国家基础建设的重要部分,交通网络的主干,道路的信息获取对地理信系统与资源环境评价具有完善与参考的作用。基于高分辨率影像,有效对道路材质信息的提取不仅可也降低人力、物力和财力的消耗,还大幅度降低交通道路的获取时间道路,对自然灾害的发生也能够快速做出反应,及时发现道路是否畅通以及完整情况,并根据道路材质预测能承载最大重量以判断救灾车的顺利通过,对路径分析应急处理有重大作用。道路信息的提取过程又受到树木,道路不规整,车辆、道路旁边的基础建设影响,提取的结果有时会不尽人意,通过基于规则面向对象两方面试着用不同的规则进行多次实验调试,寻求最佳的提取规则。

1.2 国内外研究现状

随着遥感技术的不断更新,遥感影像数据包含的信息也变得更为丰富,便于人们更加深入的对遥感影像进行进一步研究。道路运输自古以来是我国的主要交通运输方式,在人类的日常生活中起到骨架构成支撑的作用,道路信息的获取从古至今都尤为重要。早在20世纪70年代后期,国外学者Bajcsy
R等人就已开始从事基于遥感影像对道路信息的提取研究工作[1]。随后国内学者周林保等人也陆续开始进行道路特征提取相关实验。海内外学者利用各种数据源,根据图像的不同特征,从不同的角度以及不同技术方法,在各个领域对道路信息的准确提取开始了大量的实验。

在道路信息提取方面,国内外学者都在如火如荼地进行更近一步的研究。近年来,我国关于遥感影像的道路信息提取方法研究随着科技的迅猛发展与国家综合实力的高速晋升的势头下已经涉及到许多的领域,研究出信息提取涵盖了许多方法。这些研究方法已经运用到实际中,其中具有代表性的几种方法分别为:面对对象[2]、基于特征[3]、基于分类[4]、Snakes模型[5]等研究方法。

赵金阳等人利用面对对象提取道路的方法,利用Canny边缘检测对道路边缘增强处理,分析影像获取最优尺度参数、形状因子和紧致度因子,利用多尺度分割进行对影响的分割,通过灰度共生矩阵统计纹理特征和辐射亮度值,对道路提取的规则,完成对道路的提取[6]。杨超等利用支持向量机(SVM)的高效强大的非线性统计计算与分类能力,使用标注样本的工具选取大量道路样本进行训练,基于标记的样本训练结果对实验数据进行处理,通过融合多尺度尺度分割生成对抗网络GAN-Unet改进模型来对道路进行提取,根据纹理算子中局部二进制模式(LBP)对高分辨率遥感影像的道路材质信息的提取[7]。佘宇晨等通过沥青、落地和水泥的高光谱数据,比对通过光谱均值、倒数后取对数、二阶微分方法生成的光谱图之间的差异,得出倒数后取对数方法能够有效的识别出道路材质类型[8]。

相对于国内来说,国外的航天技术与计算机技术起步都要早于我们国家,在对遥感图像信息提取更是起步相对更早,无论是基于深度学习还是传统的遥感图像处理。Buslaev等基于卷积神经网络,对遥感图像道路的自动提取,更好的对道路的材质进行自动识别提取[9]。Li,HuangX,Gamba
P利用线性与非线性特征用组合的分类器对图像进行提取,此方法提取的图像信息更加清晰[10]。Costea等提出“三步走”的方法来对遥感影像的道路信息进行提取。使用U-Net网络组合对遥感影像提取道路,再通过推理计算将道路断裂丢失的部分相接在一起,以便提高道路信息提取的精度[11]。Hedman.K通过利用高分辨率合成孔径雷达场景,把类辅助特征应用到遥感影像道路信息提取中,成功完成了对城市和农村试验区的道路信息提取[12]。

就国内外对遥感影像的道路信息提取,由于我国起步比较晚,遥感技术层面信息的提取国外目前处于领先地位,但近几年我国遥感技术的发展非常迅猛。对于遥感影像的道路信息提取采用的方法基本原理较为一致,深度学习方面国内外学者齐头迸进。

对遥感影像的地物信息提取主要分两个方面进行研究,一方面根据遥感图像中不同地物表现出的不同特征,对不同地物的信息分类和提取识别;另一方面基于深度学习,定义特征,建立分类规则,通过分类规则对遥感影像完成分类提取。因此在以上背景下,本文主要借助ENVI软件,以易康(eCognition)软件、ArcGIS软件、百度街景数据、谷歌地图以及实地考察数据为辅助,构造道路材质信息提取的平台,基于规则面向对象对GF-2号影像对道路材质信息进行提取。

1.3 论文研究内容与结构安排

1.3.1 论文主要工作

本文主要基于规则面向对象方法对GF-2号遥感影像进行道路材质信息进行提取。在对GF-2号遥感影像进行分析操作之前,需先进行影像预处理操作,对GF-2号影像进行图像纠正和图像融合等手段,减少遥感影像的一系列误差,增强恢复影像有用的信息并降低影像的失真。通过前人所研究出的分割与分类的方法,最终确定本文对影像的分割方法为多尺度分割,并利用ESP插件工具确定不同材质道路的最佳分割尺度,基于影像的光谱特征、纹理特征和几何特征等信息进行分析,确定规则集以便对影像的道路材质信息的提取,最终实现影像的道路材质信息提取。分析基于规则的面向对象提取不同道路材质信息结果,判别不同材质道路的分类提取的总体精度和Kappa系数,验证本论文所采取的方法的准确性于实用性,为将来道路的规划于建设以及监督在一定程度上提供了基础依据。

1.3.2 论文结构安排

依据本论文的研究内容安排,论文总共分五个章节,以下分别是对每个章节的研究内容简述。根据所研究内容绘制本文框架,如图1.1。

第一章,绪论部分,主要对道路材质信息提取的研究背景和意义进行介绍,以及国内外对道路信息提取分类的方法的研究现状,国内外学者利用多种数据源,从图像的各种特征着手采用不同技术方法不同方向。由此研究背景与发展技术引出本文所利用的合适的研究手段与技术方法。

第二章,对研究区域和GF-2号遥感卫星的简单介绍,其次介绍高分辨率遥感图像的预处理,包括影像的图像纠正和图像融合。最后为了后期道路材质的提取的准确性,介绍了影像的最佳波段组合。

第三章,主要介绍基于规则面向对象对道路材质信息进行提取,对道路提取时涉及的各类特征,主要包括面对对象的最优尺度分割,GF-2号影像中的特征分析。依据影像的特征分析,针对不同道路材质信息,制定一系列多层次规则,对不同类型的道路进行提取。并结合实地考察数据进行二次修正,生成最终提取结果。

第四章,分析道路提取结果,并介绍本文利用的精度评价方法,基于最终各类型道路的分类提取结果进行精度评价,分析评价结果。

第五章,总结与展望。通过前四章的研究路线与研究成果,获取出本文最终结论,并对本文所研究内容的不足进行阐述,展望后期对道路材质信息提取的发展。

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-XwwabwJI-1624528666821)(media/5b71eae4a9578bf2d65c384be05569cd.png)]

图1.1 论文框架

1.4 本章小结

本章详细的介绍了遥感影像的道路信息提取的发展进程。如今社会,高分辨率遥感影像已经走进人们的生活,所包含的地物信息也越来越丰富,同时地物的复杂性、多变性对提取增加了一定的难度,因此对其道路信息的提取研究相续开展。国内外的研究提取方法的手段与差异,国内外学者对遥感影像的道路信息的提取的研究依旧在开展着旨在寻求更为简便准确的方法;其次,查阅大量关于遥感影像道路提取,材质识别等相关资料,对目前人们已经掌握的方法进行对比,并提取出本文将采用基于规则面对对

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值