Backpropagation
Backpropagation(反向传播),就是告诉我们用gradient descent来train一个neural network的时候该怎么做,它只是求微分的一种方法,而不是一种新的算法
Gradient Descent
gradient descent的使用方法,跟前面讲到的linear Regression或者是Logistic Regression是一模一样的,唯一的区别就在于当它用在neural network的时候,network parameters θ = w 1 , w 2 , . . . , b 1 , b 2 , . . . \theta=w_1,w_2,...,b_1,b_2,... θ=w1,w2,...,b1,b2,...里面可能会有将近million个参数
所以现在最大的困难是,如何有效地把这个近百万维的vector给计算出来,这就是Backpropagation要做的事情,所以Backpropagation并不是一个和gradient descent不同的training的方法,它就是gradient descent,它只是一个比较有效率的算法,让你在计算这个gradient的vector的时候更有效率
Chain Rule
Backpropagation里面并没有什么高深的数学,你唯一需要记得的就只有Chain Rule(链式法则)
对整个neural network,我们定义了一个loss function: L ( θ ) = ∑ n = 1 N l n ( θ ) L(\theta)=\sum\limits_{n=1}^N l^n(\theta) L(θ)=n=1∑Nln(θ),它等于所有training data的loss之和
然后summation over所有training data的cross entropy
l
n
(
θ
)
l^n(\theta)
ln(θ),得到total loss
L
(
θ
)
L(\theta)
L(θ),这就是我们的loss function,用这个
L
(
θ
)
L(\theta)
L(θ)对某一个参数w做偏微分,表达式如下:
∂
L
(
θ
)
∂
w
=
∑
n
=
1
N
∂
l
n
(
θ
)
∂
w
\frac{\partial L(\theta)}{\partial w}=\sum\limits_{n=1}^N\frac{\partial l^n(\theta)}{\partial w}
∂w∂L(θ)=n=1∑N∂w∂ln(θ)
这个表达式告诉我们,只需要考虑如何计算对某一笔data的
∂
l
n
(
θ
)
∂
w
\frac{\partial l^n(\theta)}{\partial w}
∂w∂ln(θ),再将所有training data的cross entropy对参数w的偏微分累计求和,就可以把total loss对某一个参数w的偏微分给计算出来
我们先考虑某一个neuron,先拿出上图中被红色三角形圈住的neuron,假设只有两个input x 1 , x 2 x_1,x_2 x1,x2,通过这个neuron,我们先得到 z = b + w 1 x 1 + w 2 x 2 z=b+w_1 x_1+w_2 x_2 z=b+w1x1+w2x2,然后经过activation function从这个neuron中output出来,作为后续neuron的input,再经过了非常非常多的事情以后,会得到最终的output y 1 , y 2 y_1,y_2 y1,y2
现在的问题是这样: ∂ l ∂ w \frac{\partial l}{\partial w} ∂w∂l该怎么算?按照chain rule,可以把它拆分成两项, ∂ l ∂ w = ∂ z ∂ w ∂ l ∂ z \frac{\partial l}{\partial w}=\frac{\partial z}{\partial w} \frac{\partial l}{\partial z} ∂w∂l=∂w∂z∂z∂l,这两项分别去把它计算出来。前面这一项是比较简单的,后面这一项是比较复杂的
计算前面这一项 ∂ z ∂ w \frac{\partial z}{\partial w} ∂w∂z的这个process,我们称之为Forward pass;而计算后面这项 ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l的process,我们称之为Backward pass
先考虑 ∂ z ∂ w \frac{\partial z}{\partial w} ∂w∂z这一项,完全可以秒算出来, ∂ z ∂ w 1 = x 1 , ∂ z ∂ w 2 = x 2 \frac{\partial z}{\partial w_1}=x_1 ,\ \frac{\partial z}{\partial w_2}=x_2 ∂w1∂z=x1, ∂w2∂z=x2
它的规律是这样的:求 ∂ z ∂ w \frac{\partial z}{\partial w} ∂w∂z,就是看w前面连接的input是什么,那微分后的 ∂ z ∂ w \frac{\partial z}{\partial w} ∂w∂z值就是什么,因此只要计算出neural network里面每一个neuron的output就可以知道任意的z对w的偏微分
- 比如input layer作为neuron的输入时, w 1 w_1 w1前面连接的是 x 1 x_1 x1,所以微分值就是 x 1 x_1 x1; w 2 w_2 w2前面连接的是 x 2 x_2 x2,所以微分值就是 x 2 x_2 x2
- 比如hidden layer作为neuron的输入时,那该neuron的input就是前一层neuron的output,于是 ∂ z ∂ w \frac{\partial z}{\partial w} ∂w∂z的值就是前一层的z经过activation function之后输出的值(下图中的数据是假定activation function为sigmoid function得到的)
再考虑 ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l这一项,它是比较复杂的,这里我们依旧假设activation function是sigmoid function
公式推导
我们的z通过activation function得到a,这个neuron的output是
a
=
σ
(
z
)
a=\sigma(z)
a=σ(z),接下来这个a会乘上某一个weight
w
3
w_3
w3,再加上其它一大堆的value得到
z
′
z'
z′,它是下一个neuron activation function的input,然后a又会乘上另一个weight
w
4
w_4
w4,再加上其它一堆value得到
z
′
′
z''
z′′,后面还会发生很多很多其他事情,不过这里我们就只先考虑下一步会发生什么事情:
∂
l
∂
z
=
∂
a
∂
z
∂
l
∂
a
\frac{\partial l}{\partial z}=\frac{\partial a}{\partial z} \frac{\partial l}{\partial a}
∂z∂l=∂z∂a∂a∂l
这里的
∂
a
∂
z
\frac{\partial a}{\partial z}
∂z∂a实际上就是activation function的微分(在这里就是sigmoid function的微分),接下来的问题是
∂
l
∂
a
\frac{\partial l}{\partial a}
∂a∂l应该长什么样子呢?a会影响
z
′
z'
z′和
z
′
′
z''
z′′,而
z
′
z'
z′和
z
′
′
z''
z′′会影响
l
l
l,所以通过chain rule可以得到
∂
l
∂
a
=
∂
z
′
∂
a
∂
l
∂
z
′
+
∂
z
′
′
∂
a
∂
l
∂
z
′
′
\frac{\partial l}{\partial a}=\frac{\partial z'}{\partial a} \frac{\partial l}{\partial z'}+\frac{\partial z''}{\partial a} \frac{\partial l}{\partial z''}
∂a∂l=∂a∂z′∂z′∂l+∂a∂z′′∂z′′∂l
这里的
∂
z
′
∂
a
=
w
3
\frac{\partial z'}{\partial a}=w_3
∂a∂z′=w3,
∂
z
′
′
∂
a
=
w
4
\frac{\partial z''}{\partial a}=w_4
∂a∂z′′=w4,那
∂
l
∂
z
′
\frac{\partial l}{\partial z'}
∂z′∂l和
∂
l
∂
z
′
′
\frac{\partial l}{\partial z''}
∂z′′∂l又该怎么算呢?这里先假设我们已经通过某种方法把
∂
l
∂
z
′
\frac{\partial l}{\partial z'}
∂z′∂l和
∂
l
∂
z
′
′
\frac{\partial l}{\partial z''}
∂z′′∂l这两项给算出来了,然后回过头去就可以把
∂
l
∂
z
\frac{\partial l}{\partial z}
∂z∂l给轻易地算出来
∂
l
∂
z
=
∂
a
∂
z
∂
l
∂
a
=
σ
′
(
z
)
[
w
3
∂
l
∂
z
′
+
w
4
∂
l
∂
z
′
′
]
\frac{\partial l}{\partial z}=\frac{\partial a}{\partial z} \frac{\partial l}{\partial a}=\sigma'(z)[w_3 \frac{\partial l}{\partial z'}+w_4 \frac{\partial l}{\partial z''}]
∂z∂l=∂z∂a∂a∂l=σ′(z)[w3∂z′∂l+w4∂z′′∂l]
这个式子还是蛮简单的,然后,我们可以从另外一个观点来看待这个式子
你可以想象说,现在有另外一个neuron,它不在我们原来的network里面,在下图中它被画成三角形,这个neuron的input就是 ∂ l ∂ z ′ \frac{\partial l}{\partial z'} ∂z′∂l和 ∂ l ∂ z ′ ′ \frac{\partial l}{\partial z''} ∂z′′∂l,那input ∂ l ∂ z ′ \frac{\partial l}{\partial z'} ∂z′∂l就乘上 w 3 w_3 w3,input ∂ l ∂ z ′ ′ \frac{\partial l}{\partial z''} ∂z′′∂l就乘上 w 4 w_4 w4,它们两个相加再乘上activation function的微分 σ ′ ( z ) \sigma'(z) σ′(z),就可以得到output ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l
值得注意的是,这里的 σ ′ ( z ) \sigma'(z) σ′(z)是一个constant常数,它并不是一个function,因为z其实在计算forward pass的时候就已经被决定好了,z是一个固定的值
所以这个neuron其实跟我们之前看到的sigmoid function是不一样的,它并不是把input通过一个non-linear进行转换,而是直接把input乘上一个constant σ ′ ( z ) \sigma'(z) σ′(z),就得到了output,因此这个neuron被画成三角形,代表它跟我们之前看到的圆形的neuron的运作方式是不一样的,它是直接乘上一个constant(这里的三角形有点像电路里的运算放大器op-amp,它也是乘上一个constant)
两种情况
ok,现在我们最后需要解决的问题是,怎么计算 ∂ l ∂ z ′ \frac{\partial l}{\partial z'} ∂z′∂l和 ∂ l ∂ z ′ ′ \frac{\partial l}{\partial z''} ∂z′′∂l这两项,假设有两个不同的case:
case 1:Output Layer
假设蓝色的这个neuron已经是hidden layer的最后一层了,也就是说连接在
z
′
z'
z′和
z
′
′
z''
z′′后的这两个红色的neuron已经是output layer,它的output就已经是整个network的output了,这个时候计算就比较简单
∂
l
∂
z
′
=
∂
y
1
∂
z
′
∂
l
∂
y
1
\frac{\partial l}{\partial z'}=\frac{\partial y_1}{\partial z'} \frac{\partial l}{\partial y_1}
∂z′∂l=∂z′∂y1∂y1∂l
其中
∂
y
1
∂
z
′
\frac{\partial y_1}{\partial z'}
∂z′∂y1就是output layer的activation function (softmax) 对
z
′
z'
z′的偏微分
而 ∂ l ∂ y 1 \frac{\partial l}{\partial y_1} ∂y1∂l就是loss对 y 1 y_1 y1的偏微分,它取决于你的loss function是怎么定义的,也就是你的output和target之间是怎么evaluate的,你可以用cross entropy,也可以用mean square error,用不同的定义, ∂ l ∂ y 1 \frac{\partial l}{\partial y_1} ∂y1∂l的值就不一样
这个时候,你就已经可以把 l l l对 w 1 w_1 w1和 w 2 w_2 w2的偏微分 ∂ l ∂ w 1 \frac{\partial l}{\partial w_1} ∂w1∂l、 ∂ l ∂ w 2 \frac{\partial l}{\partial w_2} ∂w2∂l算出来了
假设现在红色的neuron并不是整个network的output,那 z ′ z' z′经过红色neuron的activation function得到 a ′ a' a′,然后output a ′ a' a′和 w 5 w_5 w5、 w 6 w_6 w6相乘并加上一堆其他东西分别得到 z a z_a za和 z b z_b zb,如下图所示
你可能会想说,这个方法听起来挺让人崩溃的,每次要算一个微分的值,都要一路往后走,一直走到network的output,如果写成表达式的话,一层一层往后展开,感觉会是一个很可怕的式子,但是!实际上并不是这个样子做的
你只要换一个方向,从output layer的 ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l开始算,你就会发现它的运算量跟原来的network的Feedforward path其实是一样的
假设现在有6个neuron,每一个neuron的activation function的input分别是 z 1 z_1 z1、 z 2 z_2 z2、 z 3 z_3 z3、 z 4 z_4 z4、 z 5 z_5 z5、 z 6 z_6 z6,我们要计算 l l l对这些 z z z的偏微分,按照原来的思路,我们想要知道 z 1 z_1 z1的偏微分,就要去算 z 3 z_3 z3和 z 4 z_4 z4的偏微分,想要知道 z 3 z_3 z3和 z 4 z_4 z4的偏微分,就又要去计算两遍 z 5 z_5 z5和 z 6 z_6 z6的偏微分,因此如果我们是从 z 1 z_1 z1、 z 2 z_2 z2的偏微分开始算,那就没有效率
在做Backward pass的时候,实际上的做法就是建另外一个neural network,本来正向neural network里面的activation function都是sigmoid function,而现在计算Backward pass的时候,就是建一个反向的neural network,它的activation function就是一个运算放大器op-amp,每一个反向neuron的input是loss l l l对后面一层layer的 z z z的偏微分 ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l,output则是loss l l l对这个neuron的 z z z的偏微分 ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l,做Backward pass就是通过这样一个反向neural network的运算,把loss l l l对每一个neuron的 z z z的偏微分 ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l都给算出来
注:如果是正向做Backward pass的话,实际上每次计算一个 ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l,就需要把该neuron后面所有的 ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l都给计算一遍,会造成很多不必要的重复运算,如果写成code的形式,就相当于调用了很多次重复的函数;而如果是反向做Backward pass,实际上就是把这些调用函数的过程都变成调用“值”的过程,因此可以直接计算出结果,而不需要占用过多的堆栈空间
Summary
最后,我们来总结一下Backpropagation是怎么做的
Forward pass,每个neuron的activation function的output,就是它所连接的weight的 ∂ z ∂ w \frac{\partial z}{\partial w} ∂w∂z
Backward pass,建一个与原来方向相反的neural network,它的三角形neuron的output就是 ∂ l ∂ z \frac{\partial l}{\partial z} ∂z∂l
把通过forward pass得到的
∂
z
∂
w
\frac{\partial z}{\partial w}
∂w∂z和通过backward pass得到的
∂
l
∂
z
\frac{\partial l}{\partial z}
∂z∂l乘起来就可以得到
l
l
l对
w
w
w的偏微分
∂
l
∂
w
\frac{\partial l}{\partial w}
∂w∂l
∂
l
∂
w
=
∂
z
∂
w
∣
f
o
r
w
a
r
d
p
a
s
s
⋅
∂
l
∂
z
∣
b
a
c
k
w
a
r
d
p
a
s
s
\frac{\partial l}{\partial w} = \frac{\partial z}{\partial w}|_{forward\ pass} \cdot \frac{\partial l}{\partial z}|_{backward \ pass}
∂w∂l=∂w∂z∣forward pass⋅∂z∂l∣backward pass