描述
由于在维护世界和平的事务中做出巨大贡献,Dzx被赠予糖果公司2010年5月23日当天无限量糖果免费优惠券。在这一天,Dzx可以从糖果公司的N件产品中任意选择若干件带回家享用。糖果公司的N件产品每件都包含数量不同的糖果。Dzx希望他选择的产品包含的糖果总数是K的整数倍,这样他才能平均地将糖果分给帮助他维护世界和平的伙伴们。当然,在满足这一条件的基础上,糖果总数越多越好。Dzx最多能带走多少糖果呢?
注意:Dzx只能将糖果公司的产品整件带走。
输入
第一行包含两个整数N(1<=N<=100)和K(1<=K<=100)
以下N行每行1个整数,表示糖果公司该件产品中包含的糖果数目,不超过1000000
输出
注意:Dzx只能将糖果公司的产品整件带走。
以下N行每行1个整数,表示糖果公司该件产品中包含的糖果数目,不超过1000000
符合要求的最多能达到的糖果总数,如果不能达到K的倍数这一要求,输出0
动态转移方程:f[i][Yu]=max(f[i][Yu],f[i-1][j]+a[i]);
#include <cstdio>
#include <algorithm>
using namespace std;
int N,K,a[105],f[105][105];
int main()
{
scanf("%d%d",&N,&K);
for(int i=1;i<=N;i++)
scanf("%d",&a[i]);
for(int i=1;i<=N;i++)
for(int j=0;j<=K-1;j++){
f[i][j] = max(f[i][j], f[i-1][j]);
int Yu = (f[i-1][j]+a[i])%K;
f[i][Yu] = max(f[i-1][j]+a[i], f[i][Yu]);
}
printf("%d",f[N][0]);
return 0;
}