Description
要买若干种价值的珍珠,但买某种珍珠必须多付10颗此种珍珠的价钱,及如果买价值为1的珍珠100颗,必须付的钱数为110。一颗珍珠可以用比它贵的珍珠充数,因此买多种珍珠的时候用贵的代替便宜的可能更省钱。输入要买的若干种珍珠,可用高价珍珠充数的条件下,问最少需要花费多少钱
Input
第一行为t表示数据组数,每组用例第一行一个整数为珍珠种数c(1<=c<=100),以后每行两个数ai,pi(1<=ai,pi<=1000),ai表示需要的珍珠数量,pi表示这种珍珠的价钱
Output
对于每组用例,输出最少花费
Sample Input
2
2
100 1
100 2
3
1 10
1 11
100 12
Sample Output
330
1344
Solution
经典dp
高档次的珍珠若要和低档次的珍珠合并,那么这些低档次的珍珠必须是和它紧邻的,也就是说,它只有和第i-1,i-2,…,i-j类珍珠合并,同时这种合并必须是连续的。用sum[i]记录前 i 类珍珠的总数。推出状态转移方程:
dp[i]=min(dp[i],(sum[i]-sum[j]+10)*pri[i]+dp[j])
Code
#include<stdio.h>
#define min(x,y) (x<y?x:y)
int main()
{
int dp[105],num[105],sum[105],pri[105],i,j,k,t,m,n;
scanf("%d",&m);
while(m!=0)
{
scanf("%d",&n);
for(i=1;i<=n;i++)
scanf("%d%d",&num[i],&pri[i]);
sum[0]=0;
for(i=1;i<=n;i++)//前缀和
sum[i]=sum[i-1]+num[i];
dp[0]=0;//初始化
for(i=1;i<=n;i++)
{
dp[i]=999999999;//初始化
for(j=0;j<=i;j++)
dp[i]=min(dp[i],(dp[j]+(sum[i]-sum[j]+10)*pri[i]));
}
printf("%d\n",dp[n]);
m--;
}
}