POJ 3169 Layout(差分约束-SPFA)

61 篇文章 0 订阅

Description
当排队等候喂食时,奶牛喜欢和它们的朋友站得靠近些。FJ有N(2<=N<=1000)头奶牛,编号从1到N,沿一条直线站着等候喂食。奶牛排在队伍中的顺序和它们的编号是相同的。因为奶牛相当苗条,所以可能有两头或者更多奶牛站在同一位置上。即使说,如果我们想象奶牛是站在一条数轴上的话,允许有两头或更多奶牛拥有相同的横坐标。
一些奶牛相互间存有好感,它们希望两者之间的距离不超过一个给定的数L。另一方面,一些奶牛相互间非常反感,它们希望两者间的距离不小于一个给定的数D。给出ML条关于两头奶牛间有好感的描述,再给出MD条关于两头奶牛间存有反感的描述。(1<=ML,MD<=10000,1<=L,D<=1000000)
你的工作是:如果不存在满足要求的方案,输出-1;如果1号奶牛和N号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离
Input
第一行为三个整数N,ML,MD,之后ML行每行为一条两头奶牛间有好感的描述,三个整数A,B,D,表示奶牛A,B距离不超过D,最后MD行每行一条两头奶牛间存在反感的描述,三个整数A,B,D,表示奶牛A,B距离不小于D
Output
如果不存在满足要求的方案,输出-1;如果1号奶牛和N号奶牛间的距离可以任意大,输出-2;否则,计算出在满足所有要求的情况下,1号奶牛和N号奶牛间可能的最大距离
Sample Input
4 2 1
1 3 10
2 4 20
2 3 3
Sample Output
27
Solution
如果当前问题比较复杂,我们应该学会“退一步”思考,由简单到复杂。
求最大值不知从何下手,我们先从容易的开始分析。我们先研究,如果不要求输出1和N的最大距离,而只需一个可行的距离,应该如何操作。
我们用D[i]表示I号奶牛和1号奶牛间的距离。因为在队伍中的顺序必须和编号相同,所以对于任意I号奶牛,1 <= I < N,在距离上应该满足:D[I+1] - D[I] >= 0
对于每个好感的描述(i,j,k),假设i<=j,体现到距离上的要求就是:D[j] - D[I] <= k
对于每个反感的描述(i,j,k),假设i<=j,体现到距离上的要求就是:D[j] - D[I] >= k
这时的模型有一个名称,叫作:差分约束系统。
为了方便起见,我们将每种不等式写成我们约定的形式:
D[I] <= D[I+1]
D[j] <= D[I] + k
D[I] <= D[j] - k
在求顶点间地最短路问题中,我们有这样的不等式:若顶点u到顶点v有边e=uv,且边权为w(e),设d(u),d(v)为源点到顶点u和顶点v的最短路长,则 d(v) <= d(u) + w(e)
这个不等式和前面的条件形式十分相似,这就启发我们用构图用最短路做。
具体步骤是:
作有向图G=(V,E),V={ v1,v2,v3,…,vn},E={e1,e2,e3,…},对于相邻两点i和(i+1),对应的顶点vi+1向vi引一条边,费用为0;对于每组好感描述(ai,bi,di),我们假设有ai < bi,否则ai和bi交换,则顶点vai向vbi引一条边,费用为di;对于每组反感描述(ai,bi,di),我们假设有ai < bi,否则ai和bi交换,则顶点vbi向vai引一条边,费用为-di。
于是问题变为在G中求v1到其它所有顶点的最短路。我们证明若G中无负权回路,则问题有解,即存在满足条件的数列,若G中有负权回路,则问题无解,即不存在满足条件的数列。
故问题是否有解等价于图G是否没有负权回路。
证明:若G中无负权回路,我们可以求出v1其他顶点u的最短路长,设为d(u)。由于是最短路,因此对于任意边eE,e=uv,有d(u)+w(e)>=d(v),从而所有的约束条件都被满足,问题一定有解。若G中有负权回路,说明在任何时刻,G中至少有一个点v的最短路长可以更新,因此必须存在一条边e=uv,使得d(u)+w(e) < d(v)。所以无论何时,都会有某个约束条件不被满足,问题无解。
跑一遍SPFA,如果有负环输出-1,如果dis[n]=INF输出-2,否则输出dis[n]
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 111111
struct edge
{
    int to,next;
    int cost;
}g[maxn];
int head[maxn],tol;
int dis[maxn];//所有点到起点的最短距离
int cnt[maxn];//统计每个点的入队次数,若入队次数大于顶点数说明有负环
void init()//初始化
{
    memset(head,-1,sizeof(head));
    tol=0;
}
void add(int u,int v,int c)//单向边,从u到v,权值为c
{
    g[tol].cost=c;
    g[tol].to=v;
    g[tol].next=head[u];
    head[u]=tol++;
}
int spfa(int s,int n)//单源最短路,s是起点,n为点数
{
    bool vis[maxn];
    memset(vis,0,sizeof(vis));
    memset(cnt,0,sizeof(cnt));
    queue<int>que;
    for(int i=0;i<maxn;i++)dis[i]=INF;
    cnt[s]++;
    dis[s]=0;
    vis[s]=1;
    que.push(s);
    while(!que.empty())
    {
        int u=que.front();
        que.pop();
        vis[u]=0;
        for(int i=head[u];i!=-1;i=g[i].next)
        {
            int v=g[i].to;
            int c=g[i].cost;
            if(dis[v]>dis[u]+c)
            {
                dis[v]=dis[u]+c;
                if(!vis[v])
                {
                    vis[v]=1;
                    que.push(v);
                    cnt[v]++;
                    if(cnt[v]>n)return -1;//存在负环
                }
            }
        }
    }
    if(dis[n]==INF)return -2;
    return dis[n];
}
int main()
{
    int n,ml,md;
    while(~scanf("%d%d%d",&n,&ml,&md))
    {
        init();
        for(int i=1;i<n;i++)add(i+1,i,0);
        while(ml--)
        {
            int a,b,d;
            scanf("%d%d%d",&a,&b,&d);
            add(a,b,d);
        }
        while(md--)
        {
            int a,b,d;
            scanf("%d%d%d",&a,&b,&d);
            add(b,a,-d);
        }
        printf("%d\n",spfa(1,n));
    }
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值