Description
FJ要把水从池塘引到小溪,在其间,有M个点和N条渠,渠连接点,渠有流量限制,问最多可以从池塘流多少水到小溪?
Input
多组输入,每组输入第一行为两个整数M和N分别表示渠数和点数,之后M行每行三个整数a,b和c表示a点到b点有一条流量为c的渠,以文件尾结束输入
Output
对于每组用例,输出能从池塘(编号1)到小溪(编号N)最多流水量
Sample Input
5 4
1 2 40
1 4 20
2 4 20
2 3 30
3 4 10
Sample Output
50
Solution
最大流裸题,以渠为边见图后用Dinic算法求出最大流即为最大水流量
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define maxn 222
#define maxm 555
#define INF 0x3f3f3f3f
int head[maxn],cur[maxn],d[maxn],st[maxm],s,e,no,n;
struct point
{
int u,v,flow,next;
point(){};
point(int x,int y,int z,int w):u(x),v(y),next(z),flow(w){};
}p[maxm];
void add(int x,int y,int z)
{
p[no]=point(x,y,head[x],z);
head[x]=no++;
p[no]=point(y,x,head[y],0);
head[y]=no++;
}
void init()
{
memset(head,-1,sizeof(head));
no=0;
}
bool bfs()
{
int i,x,y;
queue<int>q;
memset(d,-1,sizeof(d));
d[s]=0;
q.push(s);
while(!q.empty())
{
x=q.front();
q.pop();
for(i=head[x];i!=-1;i=p[i].next)
{
if(p[i].flow&& d[y = p[i].v]<0)
{
d[y]=d[x]+1;
if(y==e)
return true;
q.push(y);
}
}
}
return false;
}
int dinic()
{
int i,loc,top,x=s,nowflow,maxflow=0;
while(bfs()){
for(i=s;i<=e;i++)
cur[i]=head[i];
top=0;
while(true)
{
if(x==e)
{
nowflow=INF;
for(i=0;i<top;i++)
{
if(nowflow>p[st[i]].flow)
{
nowflow=p[st[i]].flow;
loc=i;
}
}
for(i=0;i<top;i++)
{
p[st[i]].flow-=nowflow;
p[st[i]^1].flow+=nowflow;
}
maxflow+=nowflow;
top=loc;
x=p[st[top]].u;
}
for(i=cur[x];i!=-1;i=p[i].next)
if(p[i].flow&&d[p[i].v]==d[x]+1)
break;
cur[x]=i;
if(i!=-1)
{
st[top++]=i;
x=p[i].v;
}
else
{
if(!top)
break;
d[x]=-1;
x=p[st[--top]].u;
}
}
}
return maxflow;
}
int main()
{
int m;
while(~scanf("%d%d",&m,&n))
{
init();//初始化
s=1;//源点为池塘
e=n;//汇点为小溪
int u,v,c;
for(int i=0;i<m;i++)
{
scanf("%d%d%d",&u,&v,&c);
add(u,v,c);
}
printf("%d\n",dinic());
}
return 0;
}