Description
给出每个物体的价值和物体的数量,如何分使得A,B所得价值最接近并且A的价值不能小于B
Input
多组用例,每组用例第一行为一个整数n表示物品种数,之后n行每行两个整数V和M分别表示物品价值和数量,以n=-1结束输入(0 < n,V < 50,0 < M <= 100)
Output
对于每组用例,输出满足条件的A和B的值
Sample Input
2
10 1
20 1
3
10 1
20 2
30 1
-1
Sample Output
20 10
40 40
Solution
首先统计物品总价值sum,那么问题转化为在一个物品数量不超过n*M( <= 5000),背包容量不超过sum/2( <= 125000)的01背包问题,A的值即为sum-dp[sum/2],B的值即为dp[sum/2]
Code
#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
#define maxn 5555
int a[maxn];
int dp[255555];
int main()
{
int n;
while(scanf("%d",&n)&&n>=0)
{
int k=0,sum=0;
while(n--)
{
int v,c;
scanf("%d%d",&v,&c);
sum+=v*c;
while(c--)
a[k++]=v;
}
memset(dp,0,sizeof(dp));
int V=sum/2;
for(int i=0;i<k;i++)
for(int j=V;j>=a[i];j--)
dp[j]=max(dp[j],dp[j-a[i]]+a[i]);
printf("%d %d\n",sum-dp[V],dp[V]);
}
return 0;
}