Description
给出n件物品的价值和体积,问在总体积不超过v时的第k大价值
Input
第一行为用例组数T,每组用例第一行为三个整数n,v和k,第二行n个整数表示这n件物品的价值,第三行n个整数表示这n件物品的体积
Output
对于每组用例,输出总体积不超过v的最大价值
Sample Input
3
5 10 2
1 2 3 4 5
5 4 3 2 1
5 10 12
1 2 3 4 5
5 4 3 2 1
5 10 16
1 2 3 4 5
5 4 3 2 1
Sample Output
12
2
0
Solution
01背包中的第k优决策,在做01背包时我们都用dp值表示最大值,同样的,在做第k优决策时,只需将dp数组多开一维存这k个最优解即可
Code
#include<stdio.h>
#include<string.h>
int t,n,v,k,dp[1001][35],value[101],cost[101];
void Kth_ZeroOne_Pack()
{
int t1[35],t2[35],res1,res2,res;
memset(dp,0,sizeof(dp));//初始化
for(int i=1;i<=n;i++)//01背包
for(int j=v;j>=cost[i];j--)
{
for(int l=1;l<=k;l++)
{
t1[l]=dp[j-cost[i]][l]+value[i];
t2[l]=dp[j][l];
}
res1=res2=res=1;
t1[k+1]=t2[k+1]=-1;
while(res<=k&&(res1<=k||res2<=k))//从2k项中找打前k大的
{
if(t1[res1]>t2[res2])
dp[j][res]=t1[res1++];
else
dp[j][res]=t2[res2++];
if(dp[j][res-1]!=dp[j][res])
res++;
}
}
}
int main()
{
scanf("%d",&t);
while(t--)
{
scanf("%d%d%d",&n,&v,&k);
for(int i=1;i<=n;i++)
scanf("%d",&value[i]);
for(int i=1;i<=n;i++)
scanf("%d",&cost[i]);
Kth_ZeroOne_Pack();
printf("%d\n",dp[v][k]);
}
return 0;
}