CodeForces 626 D. Jerry's Protest(概率)

Description
两个小孩玩游戏,游戏规则如下:有n个球,每个球有一个分数,每次这两个小孩从这n个球中等概率随机选取一个球并得到球的分数,谁的得分高谁赢,每局游戏结束后将球放回去。现在A和B玩儿了三局游戏,A赢了前两局,B赢了第三局,问B的得分比A的得分高的概率
Input
第一行为一整数n表示球的个数,之后n个整数ai表示每个球的分数,每个球的分数均不相同(1<=n<=2000,0<=ai<=5000)
Output
输出B得分比A得分高的概率,结果与精确值的相对误差和绝对误差均需小于1e-6
Sample Input
3
1 2 10
Sample Output
0.0740740741
Solution
概率题,统计一局赢i分的可能情况数num[i],累加后缀和之后,得到后缀和数组sum,sum[i]表示一局分差大于i的可能情况数,之后枚举前两局的得分i,j,累加num[i] * num[j] * sum[i+j],最后除于cnt^3即可,其中cnt=n * (n-1)/2=sum[0],表示每局的得分情况数
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
using namespace std;
#define maxn 5005
int n,a[maxn],num[maxn],sum[maxn];
int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=0;i<n;i++)scanf("%d",&a[i]);
        memset(num,0,sizeof(num));
        for(int i=0;i<n;i++)
            for(int j=i+1;j<n;j++)
                num[abs(a[i]-a[j])]++;
        sum[5000]=0;
        for(int i=4999;i>=0;i--)sum[i]=sum[i+1]+num[i+1];
        double ans=0;
        for(int i=1;i<5000&&2*i<5000;i++)
            if(num[i])
            {
                ans+=1.0*num[i]*num[i]*sum[2*i];
                for(int j=i+1;j<5000&&i+j<5000;j++)
                    if(num[j])ans+=2.0*num[i]*num[j]*sum[i+j];
            }
        ans=ans/sum[0]/sum[0]/sum[0];
        printf("%.10lf\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值