Description
用三种颜色的珠子围成长度为n的项链,旋转和翻转相同算同一种方案,问一共有多少种不同的方案
Input
多组用例,每组用例占一行为一整数n,以-1结束输入(n<24)
Output
输出方案数
Sample Input
4
5
-1
Sample Output
21
39
Solution
polya,令m=3表示颜色数,先考虑旋转,有n种置换,旋转k个元素后循环节即轮换数为gcd(k,n),故方案数为,然后是翻转,对称轴显然为直径,当n为偶数时有两种对称轴,一种过两点,另一种过两个中点,第一种对称轴有n/2个,翻转180度的轮换数为n/2+1,第二种对称轴也有n/2个,翻转180度的轮换数为n/2,方案数为n/2*m^(n/2)+n/2*m^(n/2+1);当n为奇数时对称轴只有一种,即过一点以及一个中点,共n个,翻转180度的轮换数为n/2,方案数为n*m^(n/2),所以翻转也有n种置换,总置换数为2*n。
Code
#include<cstdio>
#include<iostream>
#include<cmath>
using namespace std;
typedef long long ll;
int gcd(int a,int b)
{
if(b==0)return a;
return gcd(b,a%b);
}
int main()
{
int n,m=3;
while(scanf("%d",&n),~n)
{
if(!n)
{
printf("0\n");
continue;
}
ll ans=0;
for(int i=1;i<=n;i++)
ans+=pow(1.0*m,1.0*gcd(i,n));
if(n&1)ans+=n*pow(1.0*m,1.0*(n/2+1));
else ans+=n/2*pow(1.0*m,1.0*n/2)+n/2*pow(1.0*m,1.0*(n/2+1));
ans/=2*n;
printf("%lld\n",ans);
}
return 0;
}