Description
给n件白色货物染色,先把这些货物按顺序放好,然后选定一个颜色C和一个数量F,之后把前F个颜色为C的货物染成X颜色,把剩余的颜色为C的货物染成Y颜色,X和Y是与所有出现过的颜色不用的两种不同颜色,问最少需多少颜料才能把每件货物都染上不同颜色
Input
第一行一整数T表示用例组数,每组用例首先输入一整数n表示货物数量,之后输入n个整数a[i]表示给第i件货物染色需要多少颜料(1<=T<=100,1<=n<=100000,1<=a[i]<=100000,1<=sum{n}<=100000}
Output
对于每组用例,输出一整数表示给所有货物染上不同颜色所需的最少颜料数
Sample Input
2
3
7 4 7
4
5 3 7 5
Sample Output
29
40
Solution
合并果子变形,因为可以自定义顺序,倒过来看染色,每次就是把两种不同颜色的合并染成另一种颜色,代价是所需颜料之和
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
#include<functional>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 111111
int T,n;
priority_queue< ll,vector<ll>,greater<ll> >que;
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%d",&n);
while(!que.empty())que.pop();
for(int i=1;i<=n;i++)
{
int a;
scanf("%d",&a);
que.push(a);
}
ll ans=0;
while(que.size()>1)
{
ll a=que.top();que.pop();
ll b=que.top();que.pop();
a+=b;
ans+=a;
que.push(a);
}
printf("%I64d\n",ans);
}
return 0;
}