题目大意:
有N个物品,每个物品价值为Ai,现在我们可以任意打乱这些物品的位子,使得位子固定之后,初始每个物品的颜色都是白色,然后我们每一次操作可以选择一个颜色的区间,使得涂抹任意长度的部分,剩余的该颜色的部分会被涂抹成另外新的颜色,每一次涂抹的需要的花费是整个颜色的价值和。
问如何摆放并且涂抹会使得所有最终的物品的颜色都不同,并且花费最小。
思路:
反向考虑,假设我们一开始颜色都不同,那么问题就变成了,每一次选择两个颜色的物品,将其合并,变成一种颜色的物品。
那么问题其实就是在求,两两合并最终合并成一个的过程的总和最小值,如果不能改变物品的位子的话,那么这个数据量显然是一个NP难的问题(如果数据量小就是我们熟知的区间Dp),但是这个题允许位子改变,所以我们只要有贪心合并的过程,按此排列即可。每次取出最小价值的两个颜色,将其合并成一个颜色,统计过程中的花费总和就行了。贪心求出最小值。
Ac代码:
#include<stdio.h>
#include<string.h>
#include<queue>
using namespace std;
#define ll __int64
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
priority_queue<ll, vector<ll>, greater<ll> >s;
for(int i=1;i<=n;i++)
{
ll x;
scanf("%I64d",&x);
s.push(x);
}
ll ans=0;
while(!s.empty())
{
if(s.size()==1)break;
else
{
ll u=s.top();s.pop();
ll v=s.top();s.pop();
ll w=u+v;ans+=w;
s.push(w);
}
}
printf("%I64d\n",ans);
}
}