Description
给出一个数字串,可以去掉其中任意n个数字,问去掉之后该数字串的最小值和最大值
Input
第一行一整数T表示用例组数,每组用例输入一个数字串s和一整数n表示要去掉的数字个数(0<=s<=1e100000,0<=n<=|s|)
Output
输出两个数字串分别表示s去掉s个字符后的最小值和最大值
Sample Input
3
00123 2
00123 3
234714812741111111111111111111 4
Sample Output
001
123
00
23
14812741111111111111111111
74812741111111111111111111
Solution
对于最小值,目的是为使高位的数尽可能小,那么我们自高位开始维护一个单调递增栈,每次遇见比栈顶元素小的数且还可以删除数字就把栈顶元素删掉,这样以来小的数字就尽可能在最高位,进而得到的数字最小,最大值同理,维护一个单调递减栈即可
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 111111
char s[maxn];
int T,n,a[maxn];
int main()
{
scanf("%d",&T);
while(T--)
{
scanf("%s%d",s,&n);
int nn=n,p=0,len=strlen(s);
for(int i=0;i<len;i++)
{
if(!p||a[p]<=s[i]-'0')a[++p]=s[i]-'0';
else
{
while(nn&&p&&a[p]>s[i]-'0')p--,nn--;
if(nn==0)
{
for(int j=i;j<len;j++)a[++p]=s[j]-'0';
break;
}
a[++p]=s[i]-'0';
}
}
if(nn)
{
while(nn)p--,nn--;;
}
for(int i=1;i<=p;i++)printf("%d",a[i]);
printf("\n");
nn=n,p=0;
for(int i=0;i<len;i++)
{
if(!p||a[p]>=s[i]-'0')a[++p]=s[i]-'0';
else
{
while(nn&&p&&a[p]<s[i]-'0')p--,nn--;
if(nn==0)
{
for(int j=i;j<len;j++)a[++p]=s[j]-'0';
break;
}
a[++p]=s[i]-'0';
}
}
if(nn)
{
while(nn)p--,nn--;;
}
for(int i=1;i<=p;i++)printf("%d",a[i]);
printf("\n");
}
return 0;
}