HDU 6069 Counting Divisors(数论)

201 篇文章 10 订阅

Description
这里写图片描述
Input
第一行一整数T表示用例组数,每组用例输入三个整数l,r,k
(1<=T<=15,1<=l<=r<=1e12,r-l<=1e6,1<=k<=1e7)
Output
对于每组用例,输出答案
Sample Input
3
1 5 1
1 10 2
1 100 3
Sample Output
10
48
2302
Solution
这里写图片描述
Code

#include<cstdio>
#include<cstring>
using namespace std;
typedef long long ll;
const int maxn=1000011,mod=998244353;
int mark[maxn],prime[maxn],res=0;
void get_prime(int n=1000000)
{
    for(int i=2;i<=n;i++)
    {
        if(!mark[i])mark[i]=prime[res++]=i;
        for(int j=0;j<res&&prime[j]*i<=n;j++)
        {
            mark[i*prime[j]]=prime[j];
            if(i%prime[j]==0) break;
        }
    }
} 
int T,k,n,ans[maxn];
ll l,r,a[maxn];
int Solve()
{
    for(int i=0;i<res&&prime[i]*prime[i]<=r;i++)
    {
        int p=prime[i];
        ll t=((l+p-1)/p)*p;
        for(int j=t-l+1;j<=n;j+=p)
        {
            int num=0;
            while(a[j]%p==0)a[j]/=p,num++;
            ans[j]=(ll)ans[j]*((ll)k*num%mod+1)%mod;
        }
    }
    int sum=0;
    for(int i=1;i<=n;i++)
    {
        if(a[i]>1)ans[i]=(ll)ans[i]*(k+1)%mod;
        sum=(sum+ans[i])%mod; 
    }
    return sum;
}
int main()
{
    get_prime();
    scanf("%d",&T);
    while(T--)
    {
        scanf("%I64d%I64d%d",&l,&r,&k);
        n=r-l+1;    
        for(int i=1;i<=n;i++)a[i]=l+i-1,ans[i]=1;
        printf("%d\n",Solve());
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值