HDU 6116 路径计数(组合数学+NTT)

190 篇文章 1 订阅
9 篇文章 0 订阅

Description

一个包含四个点的完全图,可以在任意节点出发,可以在任意节点结束,给出每个点被经过的次数,求有多少种合法的遍历序列。如果两个序列至少有一位是不同的,则认为它们不相同。

样例:
1 2 1 0

ABCB
BABC
BACB
BCAB
BCBA
CBAB

Input

多组数据。
对于每一组数据:
第一行四个数,分别表示4个点被经过的次数(每个数小于等于1000,经过次数可以为0)

Output

一个表示答案,对998244353取模.

Sample Input

2 3 3 3

Sample Output

12336

Solution

n=a+b+c+d

任意相邻两点不同的方案数=把 n 个字母随便放的方案数-至少有一对相邻点相等的方案数+至少有两对相邻点相等的方案数-…+至少有(1)n1对相邻点相等的方案数

a A分成 i 堆方案数为Ci1a1,把 b B分成 j 堆方案数为Cj1b1,把 c C分成 k 堆方案数为Ck1c1,把 d D分成 l 堆方案数为Cl1d1,把这些堆字母随便放的方案数为 (i+j+k+l)!i!j!k!l! ,此时至少有 nijkl 对相邻点相等

ans=x=1n(1)nxx!i+j+k+l=xCi1a1Cj1b1Ck1c1Cl1d1i!j!k!l!

A[i]=Ci1a1i!,B[j]=Cj1b1j!,C[k]=Ck1c1k!,D[l]=Cl1d1l! ,对这四个序列做三次 NTT 即可

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
const int maxbit=14,maxlen=1<<maxbit,maxn=1005,mod=998244353,g=3;
int fact[maxn<<2],inv[maxn];
int wn[maxlen],inv2[maxbit+1];
int mod_pow(int a,int b)
{
    int ans=1;
    while(b)
    {
        if(b&1)ans=(ll)ans*a%mod;
        a=(ll)a*a%mod;
        b>>=1;
    }
    return ans;
}
void init()
{
    wn[0]=1,wn[1]=mod_pow(g,(mod-1)>>maxbit);
    for(int i=2;i<maxlen;i++)wn[i]=(ll)wn[i-1]*wn[1]%mod;
    inv2[0]=1,inv2[1]=(mod+1)/2;
    for(int i=2;i<=maxbit;i++)inv2[i]=(ll)inv2[i-1]*inv2[1]%mod;//预处理2^i的逆元 
    fact[0]=1;
    for(int i=1;i<=4000;i++)fact[i]=(ll)i*fact[i-1]%mod;
    inv[1]=1;
    for(int i=2;i<=1000;i++)inv[i]=mod-(ll)(mod/i)*inv[mod%i]%mod;
    inv[0]=1;
    for(int i=1;i<=1000;i++)inv[i]=(ll)inv[i]*inv[i-1]%mod;
}
void ntt(int *x,int len,int sta) 
{
    for(int i=0,j=0;i<len;i++)
    {
        if(i>j)swap(x[i],x[j]);
        for(int l=len>>1;(j^=l)<l;l>>=1);
    }
    for(int i=1,d=1;d<len;i++,d<<=1)
        for(int j=0;j<len;j+=d<<1)
            for(int k=0;k<d;k++)
            {
                int t=(ll)wn[(maxlen>>i)*k]*x[j+k+d]%mod;
                x[j+d+k]=x[j+k]-t<0?x[j+k]-t+mod:x[j+k]-t;
                x[j+k]=x[j+k]+t>=mod?x[j+k]+t-mod:x[j+k]+t;
            }
    if(sta==-1)
    {
        reverse(x+1,x+len);
        int bitlen=0;
        while((1<<bitlen)<len)bitlen++;
        int val=inv2[bitlen];
        for(int i=0;i<len;i++)x[i]=(ll)x[i]*val%mod;
    }
}
void NTT(int *a,int *b,int len)
{
    ntt(a,len,1),ntt(b,len,1);
    for(int i=0;i<len;i++)a[i]=(ll)a[i]*b[i]%mod;
    ntt(a,len,-1);
}
void inc(int &x,int y)
{
    x=x+y>=mod?x+y-mod:x+y;
}
void dec(int &x,int y)
{
    x=x-y<0?x-y+mod:x-y;
}
int C(int n,int m)
{
    return (ll)fact[n]*inv[m]%mod*inv[n-m]%mod;
}
int a[4],n,b[4][maxlen];
int main()
{
    init();
    while(~scanf("%d%d%d%d",&a[0],&a[1],&a[2],&a[3]))
    {
        n=a[0]+a[1]+a[2]+a[3];
        memset(b,0,sizeof(b));
        for(int i=0;i<4;i++)
            for(int j=1;j<=a[i];j++)
                b[i][j]=(ll)C(a[i]-1,j-1)*inv[j]%mod;
        int len=1;
        while(len<4*n)len<<=1;
        for(int i=1;i<4;i++)NTT(b[0],b[i],len);
        int ans=0;
        for(int i=1;i<=n;i++)
            if((n-i)&1)dec(ans,(ll)b[0][i]*fact[i]%mod);
            else inc(ans,(ll)b[0][i]*fact[i]%mod);
        printf("%d\n",ans);
    }
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值