CodeForces 623 E.Transforming Sequence(dp+FFT+快速幂)

202 篇文章 1 订阅
52 篇文章 0 订阅

Description

[1,2k1] 之间的整数构造一个长度为 n 的序列a1,...,an,令 bi=a1|a2|...|ai,1in ,问使得 b 序列严格递增的方案数

Input

两个整数n,k(1n1018,1k30000)

Output

输出满足条件的 a 序列个数,结果模109+7

Sample Input

1 2

Sample Output

3

Solution

为保证 b 序列严格递增,每次ai需要至少在一个 a1 ~ ai1 都是 0 的位上是1,故序列长度至多为 k ,即如n>k则无解,下面只考虑 nk 的情况

dp[i][j] 为前 i 个数占据j个二进制位的方案数,不考虑这些位在 k 个位中的位置,则答案应为i=1kCikdp[n][i]

假设要求 dp[x+y][i] ,假设前 x 个数已经占据了i位中的 j 位,方案数Cjidp[x][j],而后 y 个数要把剩下的ij位占据,而在前 x 个数占据的j位上可以随意取值,方案数 dp[y][ij]2yj ,故有 dp[x+y][i]=j=0idp[x][j]dp[y][ij]2yjCji

在求 dp[n][i] 时,如果 n 是偶数,那么有dp[n][i]i!=j=0idp[n2][j]2n2jj!dp[n2][ij](ij)!

如果 n 是奇数,可以先用上面的方法求出dp[n1]的值,然后 dp[n][i]i!=j=0idp[n1][j]2jj!1(ij)!

故可以快速幂求 dp[n] ,每次两个序列卷积得到一个新的序列, FFT 即可,时间复杂度 O(klog22k)

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define maxfft 65536+5
#define mod 1000000007
const double pi=acos(-1.0);
struct cp
{
    double a,b;
    cp operator +(const cp &o)const {return (cp){a+o.a,b+o.b};}
    cp operator -(const cp &o)const {return (cp){a-o.a,b-o.b};}
    cp operator *(const cp &o)const {return (cp){a*o.a-b*o.b,b*o.a+a*o.b};}
    cp operator *(const double &o)const {return (cp){a*o,b*o};}
    cp operator !() const{return (cp){a,-b};}
}w[maxfft];
int pos[maxfft];
void fft_init(int len)
{
    int j=0;
    while((1<<j)<len)j++;
    j--;
    for(int i=0;i<len;i++)
        pos[i]=pos[i>>1]>>1|((i&1)<<j);
}
void fft(cp *x,int len,int sta)
{
    for(int i=0;i<len;i++)
        if(i<pos[i])swap(x[i],x[pos[i]]);
    w[0]=(cp){1,0};
    for(unsigned i=2;i<=len;i<<=1)
    {
        cp g=(cp){cos(2*pi/i),sin(2*pi/i)*sta};
        for(int j=i>>1;j>=0;j-=2)w[j]=w[j>>1];
        for(int j=1;j<i>>1;j+=2)w[j]=w[j-1]*g;
        for(int j=0;j<len;j+=i)
        {
            cp *a=x+j,*b=a+(i>>1);
            for(int l=0;l<i>>1;l++)
            {
                cp o=b[l]*w[l];
                b[l]=a[l]-o;
                a[l]=a[l]+o;
            }
        }
    }
    if(sta==-1)for(int i=0;i<len;i++)x[i].a/=len,x[i].b/=len;
}
cp x[maxfft],y[maxfft],z[maxfft];
void FFT(int *a,int *b,int n,int m,int *c)
{
    int len=1;
    while(len<n+m)len<<=1;
    fft_init(len);
    for(int i=0;i<len;i++)
    {
        int aa=i<n?a[i]:0,bb=i<m?b[i]:0;
        x[i]=(cp){(aa>>15),(aa&32767)},y[i]=(cp){(bb>>15),(bb&32767)};
    }
    fft(x,len,1),fft(y,len,1);
    for(int i=0;i<len;i++)
    {
        int j=len-1&len-i;
        z[i]=((x[i]+!x[j])*(y[i]-!y[j])+(x[i]-!x[j])*(y[i]+!y[j]))*(cp){0,-0.25};
    }
    fft(z,len,-1);
    for(int i=0;i<n+m-1;i++)
    {
        ll ta=(ll)(z[i].a+0.5)%mod;
        ta=(ta<<15)%mod;
        c[i]=ta;
    }
    for(int i=0;i<len;i++)
    {
        int j=len-1&len-i;
        z[i]=(x[i]-!x[j])*(y[i]-!y[j])*(cp){-0.25,0}+(x[i]+!x[j])*(y[i]+!y[j])*(cp){0,0.25};
    }
    fft(z,len,-1);
    for(int i=0;i<n+m-1;i++)
    {
        ll ta=(ll)(z[i].a+0.5)%mod,tb=(ll)(z[i].b+0.5)%mod;
        ta=(ta+(tb<<30))%mod;
        c[i]=(c[i]+ta)%mod;
    }
}
int Pow(int a,int b)
{
    int ans=1;
    while(b)
    {
        if(b&1)ans=(ll)ans*a%mod;
        a=(ll)a*a%mod;
        b>>=1;
    }
    return ans;
}
#define maxn 30005
int fact[maxn],inv[maxn];
void init(int n=30000)
{
    fact[0]=1;
    for(int i=1;i<=n;i++)fact[i]=(ll)i*fact[i-1]%mod;
    inv[1]=1;
    for(int i=2;i<=n;i++)inv[i]=mod-(ll)(mod/i)*inv[mod%i]%mod;
    inv[0]=1;
    for(int i=1;i<=n;i++)inv[i]=(ll)inv[i]*inv[i-1]%mod;
}
int C(int n,int m)
{
    return (ll)fact[n]*inv[m]%mod*inv[n-m]%mod;
}
int f[maxfft],f1[maxfft];
void Solve(int n,int k)
{
    if(n==1)
    {
        f[0]=0;
        for(int i=1;i<=k;i++)f[i]=1;
        return ;
    }
    Solve(n/2,k);
    for(int i=1;i<=k;i++)
    {
        f[i]=(ll)f[i]*inv[i]%mod;
        f1[i]=(ll)f[i]*Pow(2,(ll)(n/2)*i%(mod-1))%mod;
    }
    FFT(f,f1,k+1,k+1,f);
    for(int i=1;i<=k;i++)f[i]=(ll)f[i]*fact[i]%mod;
    if(n&1)
    {
        for(int i=1;i<=k;i++)
        {
            f[i]=(ll)f[i]*inv[i]%mod*Pow(2,i)%mod;
            f1[i]=inv[i];
        }
        FFT(f,f1,k+1,k+1,f);
        for(int i=1;i<=k;i++)f[i]=(ll)f[i]*fact[i]%mod;
    }
}
int main()
{
    init();
    int n,k;
    while(~scanf("%d%d",&n,&k))
    {
        if(n>k)
        {
            printf("0\n");
            continue;
        }
        Solve(n,k);
        int ans=0;
        for(int i=1;i<=k;i++)ans=(ans+(ll)f[i]*C(k,i)%mod)%mod;
        printf("%d\n",ans);
    } 
    return 0;
}
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值