Description
用
[1,2k−1]
之间的整数构造一个长度为
n
的序列
Input
两个整数
Output
输出满足条件的
a
序列个数,结果模
Sample Input
1 2
Sample Output
3
Solution
为保证
b
序列严格递增,每次
设
dp[i][j]
为前
i
个数占据
假设要求
dp[x+y][i]
,假设前
x
个数已经占据了
在求
dp[n][i]
时,如果
n
是偶数,那么有
如果
n
是奇数,可以先用上面的方法求出
故可以快速幂求 dp[n] ,每次两个序列卷积得到一个新的序列, FFT 即可,时间复杂度 O(klog22k)
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define maxfft 65536+5
#define mod 1000000007
const double pi=acos(-1.0);
struct cp
{
double a,b;
cp operator +(const cp &o)const {return (cp){a+o.a,b+o.b};}
cp operator -(const cp &o)const {return (cp){a-o.a,b-o.b};}
cp operator *(const cp &o)const {return (cp){a*o.a-b*o.b,b*o.a+a*o.b};}
cp operator *(const double &o)const {return (cp){a*o,b*o};}
cp operator !() const{return (cp){a,-b};}
}w[maxfft];
int pos[maxfft];
void fft_init(int len)
{
int j=0;
while((1<<j)<len)j++;
j--;
for(int i=0;i<len;i++)
pos[i]=pos[i>>1]>>1|((i&1)<<j);
}
void fft(cp *x,int len,int sta)
{
for(int i=0;i<len;i++)
if(i<pos[i])swap(x[i],x[pos[i]]);
w[0]=(cp){1,0};
for(unsigned i=2;i<=len;i<<=1)
{
cp g=(cp){cos(2*pi/i),sin(2*pi/i)*sta};
for(int j=i>>1;j>=0;j-=2)w[j]=w[j>>1];
for(int j=1;j<i>>1;j+=2)w[j]=w[j-1]*g;
for(int j=0;j<len;j+=i)
{
cp *a=x+j,*b=a+(i>>1);
for(int l=0;l<i>>1;l++)
{
cp o=b[l]*w[l];
b[l]=a[l]-o;
a[l]=a[l]+o;
}
}
}
if(sta==-1)for(int i=0;i<len;i++)x[i].a/=len,x[i].b/=len;
}
cp x[maxfft],y[maxfft],z[maxfft];
void FFT(int *a,int *b,int n,int m,int *c)
{
int len=1;
while(len<n+m)len<<=1;
fft_init(len);
for(int i=0;i<len;i++)
{
int aa=i<n?a[i]:0,bb=i<m?b[i]:0;
x[i]=(cp){(aa>>15),(aa&32767)},y[i]=(cp){(bb>>15),(bb&32767)};
}
fft(x,len,1),fft(y,len,1);
for(int i=0;i<len;i++)
{
int j=len-1&len-i;
z[i]=((x[i]+!x[j])*(y[i]-!y[j])+(x[i]-!x[j])*(y[i]+!y[j]))*(cp){0,-0.25};
}
fft(z,len,-1);
for(int i=0;i<n+m-1;i++)
{
ll ta=(ll)(z[i].a+0.5)%mod;
ta=(ta<<15)%mod;
c[i]=ta;
}
for(int i=0;i<len;i++)
{
int j=len-1&len-i;
z[i]=(x[i]-!x[j])*(y[i]-!y[j])*(cp){-0.25,0}+(x[i]+!x[j])*(y[i]+!y[j])*(cp){0,0.25};
}
fft(z,len,-1);
for(int i=0;i<n+m-1;i++)
{
ll ta=(ll)(z[i].a+0.5)%mod,tb=(ll)(z[i].b+0.5)%mod;
ta=(ta+(tb<<30))%mod;
c[i]=(c[i]+ta)%mod;
}
}
int Pow(int a,int b)
{
int ans=1;
while(b)
{
if(b&1)ans=(ll)ans*a%mod;
a=(ll)a*a%mod;
b>>=1;
}
return ans;
}
#define maxn 30005
int fact[maxn],inv[maxn];
void init(int n=30000)
{
fact[0]=1;
for(int i=1;i<=n;i++)fact[i]=(ll)i*fact[i-1]%mod;
inv[1]=1;
for(int i=2;i<=n;i++)inv[i]=mod-(ll)(mod/i)*inv[mod%i]%mod;
inv[0]=1;
for(int i=1;i<=n;i++)inv[i]=(ll)inv[i]*inv[i-1]%mod;
}
int C(int n,int m)
{
return (ll)fact[n]*inv[m]%mod*inv[n-m]%mod;
}
int f[maxfft],f1[maxfft];
void Solve(int n,int k)
{
if(n==1)
{
f[0]=0;
for(int i=1;i<=k;i++)f[i]=1;
return ;
}
Solve(n/2,k);
for(int i=1;i<=k;i++)
{
f[i]=(ll)f[i]*inv[i]%mod;
f1[i]=(ll)f[i]*Pow(2,(ll)(n/2)*i%(mod-1))%mod;
}
FFT(f,f1,k+1,k+1,f);
for(int i=1;i<=k;i++)f[i]=(ll)f[i]*fact[i]%mod;
if(n&1)
{
for(int i=1;i<=k;i++)
{
f[i]=(ll)f[i]*inv[i]%mod*Pow(2,i)%mod;
f1[i]=inv[i];
}
FFT(f,f1,k+1,k+1,f);
for(int i=1;i<=k;i++)f[i]=(ll)f[i]*fact[i]%mod;
}
}
int main()
{
init();
int n,k;
while(~scanf("%d%d",&n,&k))
{
if(n>k)
{
printf("0\n");
continue;
}
Solve(n,k);
int ans=0;
for(int i=1;i<=k;i++)ans=(ans+(ll)f[i]*C(k,i)%mod)%mod;
printf("%d\n",ans);
}
return 0;
}