CodeForces 757 E.Bash Plays with Functions(积性函数+dp)

202 篇文章 1 订阅
201 篇文章 10 订阅

Description

定义 f0(n) 为满足 pq=n,gcd(p,q)=1 的有序对 (p,q) 对数,定义 fr+1(n)=uv=nfr(u)+fr(v)2 ,给出 r,n ,求 fr(n)

Input

第一行一整数 q 表示用例组数,每组用例输入两个整数r,n(1q106,0r106,1n106)

Output

对于每组用例,输出 fr(n) ,结果模 109+7

Sample Input

5
0 30
1 25
3 65
2 5
4 48

Sample Output

8
5
25
4
630

Solution

首先证明 f0(n) 是积性函数,对 (n,m)=1 ,对 n,m 素因子分解, n=pa11...pass,m=qb11...qbtt ,则有 piqj ,将 n 拆成两个互素的数p,q,则 p 应该取pa11,pa22,...,pass的一个子集乘起来,故 f0(n)=2s ,进而 f0(m)=2t f0(nm)=2s+t=f0(n)f0(m) ,故 f0(n) 是积性函数

如果 fr(n) 是积性函数,下面证明 fr+1(n) 是积性函数, fr+1(n)=uv=nfr(u)+fr(v)2=d|nfr(d)+fr(nd)2=12(d|nfr(d)+d|nfr(nd))=d|nfr(d)

fr+1(n) 是积性函数,由数学归纳法,对于任意 r0 fr(n) 是积性函数

n=pa11...pass ,那么 fr(n)=fr(pa11)fr(pa22)...fr(pass) ,即只要求出 fr(pk) 的值即可,其中 p 为素数

f0(pk)=2,k1,fr(1)=1,r0

fr(pk)=i=0kfr1(pi)=fr(pk1)+fr1(pk),r1,k1

预处理 dp[k][r]=fr(pk) ,对于每次查询,得到 n 的素因子分解形式中的幂指数a1,a2,...,as,则答案即为 i=1sdp[ai][r]

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=1000005;
#define mod 1000000007
int dp[20][maxn];
void add(int &x,int y)
{
    x=x+y>=mod?x+y-mod:x+y;
}
void init(int n=19,int r=1e6)
{
    dp[0][0]=1;
    for(int i=1;i<=r;i++)dp[0][i]=1;
    for(int i=1;i<=n;i++)
    {
        dp[i][0]=2;
        for(int j=1;j<=r;j++)
            add(dp[i][j],dp[i][j-1]+dp[i-1][j]);
    }
}
vector<int>g[maxn]; 
void Solve(int n)
{
    int nn=n;
    for(int i=2;i*i<=n;i++)
        if(n%i==0)
        {
            int num=0;
            while(n%i==0)n/=i,num++;
            g[nn].push_back(num);
        }
    if(n>1)g[nn].push_back(1);
}
int main()
{
    init();
    int q,n,r;
    scanf("%d",&q);
    while(q--)
    {
        scanf("%d%d",&r,&n);
        if(n==1)printf("1\n");
        else
        {
            if(g[n].size()==0)Solve(n);
            int ans=1;
            for(int i=0;i<g[n].size();i++)ans=(ll)ans*dp[g[n][i]][r]%mod;
            printf("%d\n",ans);
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值