首先设
E
E
E是一阶期望,显然有下式成立,这说明
E
E
E是积性函数.
E
(
n
)
=
σ
(
n
)
d
(
n
)
=
∏
p
a
∥
n
1
+
p
+
⋯
+
p
a
a
+
1
=
∏
p
a
∥
n
E
(
p
a
)
E(n)=\frac{\sigma(n)}{d(n)}=\prod_{p^a \Vert n} \frac{1+p+\dots +p^a}{a+1}=\prod_{p^a\Vert n} E(p^a)
E(n)=d(n)σ(n)=pa∥n∏a+11+p+⋯+pa=pa∥n∏E(pa)
其次假设
k
−
1
k-1
k−1阶期望也是积性函数,那么
E
k
E_{k}
Ek显然有下式成立:
E
k
(
n
)
=
1
d
(
n
)
∑
t
∣
n
E
k
−
1
(
t
)
=
∏
p
a
∥
n
E
k
−
1
(
1
)
+
E
k
−
1
(
p
)
+
⋯
+
E
k
−
1
(
p
a
)
a
+
1
=
∏
p
a
∥
n
E
k
(
p
a
)
E_k(n)=\frac{1}{d(n)}\sum_{t|n}E_{k-1}(t)=\prod_{p^a\Vert n} \frac{E_{k-1}(1)+E_{k-1}(p)+\dots+E_{k-1}(p^a)}{a+1}=\prod_{p^a\Vert n} E_{k}(p^a)
Ek(n)=d(n)1t∣n∑Ek−1(t)=pa∥n∏a+1Ek−1(1)+Ek−1(p)+⋯+Ek−1(pa)=pa∥n∏Ek(pa)
所以
E
k
E_k
Ek也是积性函数.
从而只用算每个素因子的贡献即可.
下面
E
[
i
]
[
k
]
[
a
]
E[i][k][a]
E[i][k][a]表示第
i
i
i个素因子
p
p
p的
k
k
k阶期望
E
k
[
p
a
]
E_k[p^a]
Ek[pa],
p
E
pE
pE表示对应的前缀和.
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const long long mod=1e9+7;
long long qp(long long a,long long b){
long long res=1;
while(b){
if(b&1)res=res*a%mod;
a=a*a%mod;
b>>=1;
}
return res;
}
long long p[20],pE[20][10005][70],E[20][10005][70],pc[20];
int main(){
long long n;
int k,c=0;
scanf("%I64d%d",&n,&k);
int sqrtn=(int)sqrt(n+1);
for(int i=2;i<=sqrtn;i++){
if(n%i==0){
p[++c]=i;
pc[c]=1;
n/=i;
while(n%i==0){n/=i;pc[c]++;}
}
}
if(n){
p[++c]=n;
pc[c]=1;
}
long long res=1;
for(int i=1;i<=c;i++){
E[i][0][0]=pE[i][0][0]=1;
for(int l=1;l<=pc[i];l++){
E[i][0][l]=E[i][0][l-1]*p[i]%mod;
pE[i][0][l]=(pE[i][0][l-1]+E[i][0][l])%mod;
}
for(int j=1;j<=k;j++){
E[i][j][0]=pE[i][j][0]=1;
for(int l=1;l<=pc[i];l++){
E[i][j][l]=pE[i][j-1][l]*qp(l+1,mod-2)%mod;
pE[i][j][l]=(pE[i][j][l-1]+E[i][j][l])%mod;
}
}
res*=E[i][k][pc[i]];
res%=mod;
}
printf("%I64d\n",res);
}