CodeForces Hello 2019 1097D - Makoto and a Blackboard(积性函数)

首先设 E E E是一阶期望,显然有下式成立,这说明 E E E是积性函数.
E ( n ) = σ ( n ) d ( n ) = ∏ p a ∥ n 1 + p + ⋯ + p a a + 1 = ∏ p a ∥ n E ( p a ) E(n)=\frac{\sigma(n)}{d(n)}=\prod_{p^a \Vert n} \frac{1+p+\dots +p^a}{a+1}=\prod_{p^a\Vert n} E(p^a) E(n)=d(n)σ(n)=pana+11+p++pa=panE(pa)
其次假设 k − 1 k-1 k1阶期望也是积性函数,那么 E k E_{k} Ek显然有下式成立:
E k ( n ) = 1 d ( n ) ∑ t ∣ n E k − 1 ( t ) = ∏ p a ∥ n E k − 1 ( 1 ) + E k − 1 ( p ) + ⋯ + E k − 1 ( p a ) a + 1 = ∏ p a ∥ n E k ( p a ) E_k(n)=\frac{1}{d(n)}\sum_{t|n}E_{k-1}(t)=\prod_{p^a\Vert n} \frac{E_{k-1}(1)+E_{k-1}(p)+\dots+E_{k-1}(p^a)}{a+1}=\prod_{p^a\Vert n} E_{k}(p^a) Ek(n)=d(n)1tnEk1(t)=pana+1Ek1(1)+Ek1(p)++Ek1(pa)=panEk(pa)
所以 E k E_k Ek也是积性函数.
从而只用算每个素因子的贡献即可.
下面 E [ i ] [ k ] [ a ] E[i][k][a] E[i][k][a]表示第 i i i个素因子 p p p k k k阶期望 E k [ p a ] E_k[p^a] Ek[pa], p E pE pE表示对应的前缀和.

#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std;
const long long mod=1e9+7;
long long qp(long long a,long long b){
	long long res=1;
	while(b){
		if(b&1)res=res*a%mod;
		a=a*a%mod;
		b>>=1;
	}
	return res;
}
long long p[20],pE[20][10005][70],E[20][10005][70],pc[20];
int main(){
	long long n;
	int k,c=0;
	scanf("%I64d%d",&n,&k);
	int sqrtn=(int)sqrt(n+1);
	for(int i=2;i<=sqrtn;i++){
		if(n%i==0){
			p[++c]=i;
			pc[c]=1;
			n/=i;
			while(n%i==0){n/=i;pc[c]++;}
		}
	}
	if(n){
		p[++c]=n;
		pc[c]=1;
	}
	long long res=1;
	for(int i=1;i<=c;i++){
		E[i][0][0]=pE[i][0][0]=1;
		for(int l=1;l<=pc[i];l++){
			E[i][0][l]=E[i][0][l-1]*p[i]%mod;
			pE[i][0][l]=(pE[i][0][l-1]+E[i][0][l])%mod;
		}
		for(int j=1;j<=k;j++){
			E[i][j][0]=pE[i][j][0]=1;
			for(int l=1;l<=pc[i];l++){
				E[i][j][l]=pE[i][j-1][l]*qp(l+1,mod-2)%mod;
				pE[i][j][l]=(pE[i][j][l-1]+E[i][j][l])%mod;
			}
		}
		res*=E[i][k][pc[i]];
		res%=mod;
	}
	printf("%I64d\n",res);
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值