GYM 100801 B.Black and White(构造)

253 篇文章 2 订阅

Description

要求构造一个 n×m 矩阵,使得其中 @ 的连通块有 A 个,.的连通块有 B 个,要求1nm105

Input

两个整数 A,B(1A,B1000)

Output

输出一个 n×m 矩阵使得其满足条件

Sample Input

2 3

Sample Output

6 7
@@@@@@@
@.@@@@@
@@…@@
@@@@@@@
…….
@@@@@@@

Solution

为方便起见,直接以 a 表示@,以 b 表示.

如果 A=B ,那么直接一个 a 一个b如此循环 A 次即可,此时n=1,m=2A

如果 AB ,不妨假设 A>B ,考虑三种基本构造

1.奇数行一个 a 一个b循环 40 次,偶数行一个 b 一个a循环 40 次,这样 x 行就可以产生40x a 连通块和40x b 连通块

2.一行a一行 b ,这样x行就可以产生 x a连通块和 x b连通块

3.由于 b 连通块少,考虑用1 b 连通块放无穷a连通块的方法,即用 b 形成#型结构,偶数行偶数列都是 b ,这样一来所有b构成一个连通块,然后可以在奇数行奇数列放 a ,这样每个位置的a都单独构成一个连通块,放够 a 连通块后用b把空位补齐即可

综合上述三种结构,首先 B 表示要拿一个 b 连通块去构造多的a连通块,答案最下端是 B/40 1 结构,中间是 B%40 2 结构,注意到为了不让这两个结构相互影响,用一行 a 隔开,上面用3结构,由于 2x×80 3 结构至多可以得到 40x a 连通块,故直接取x=40必然可以满足至多 1000 a 连通块,这样一来,最后的矩阵就是一个B/40+B%40+1+80 80 列的,由于 B1000 ,故该矩阵必然满足限制

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=100001;
int main()
{
    freopen("black.in","r",stdin);
    freopen("black.out","w",stdout);
    int A,B;
    while(~scanf("%d%d",&A,&B))
    {
        if(A==B)
        {
            printf("1 %d\n",2*A);
            for(int i=1;i<=A;i++)printf("@.");
            printf("\n");
        }
        else
        {
            char a='@',b='.';
            if(A<B)swap(A,B),swap(a,b);
            B--;
            printf("%d 80\n",2*(B%40)+1+80+B/40);
            int num=A-(B%40+1+40*max(0,B/40-1));
            for(int i=1;i<=80;i++)
            {
                if(i&1)
                    for(int j=1;j<=80;j++)
                    {
                        if((j&1)&&num)printf("%c",a),num--;
                        else printf("%c",b);
                    }
                else
                    for(int j=1;j<=80;j++)printf("%c",b);
                printf("\n"); 
            }
            for(int i=1;i<=B%40;i++)
            {
                for(int j=1;j<=80;j++)printf("%c",a);
                printf("\n");
                for(int j=1;j<=80;j++)printf("%c",b);
                printf("\n");
            }
            for(int i=1;i<=80;i++)printf("%c",a);
            printf("\n");
            for(int i=1;i<=B/40;i++)
            {
                if(i&1)
                    for(int j=1;j<=40;j++)printf("%c%c",a,b);
                else 
                    for(int j=1;j<=40;j++)printf("%c%c",b,a);
                printf("\n");
            }
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值