计蒜客 16957 Skiing(拓扑排序+dp)

202 篇文章 1 订阅
16 篇文章 0 订阅

Description

给出一个有向无环图,每条边有边权,问最长路径长度

Input

第一行一整数 T T 表示用例组数,每组用例首先输入两个整数n,m表示点数和边数,之后 m m 行每行输入三个整数u,v,w表示 u u v有一条权值为 w w 的边(n104,m105,0<w<103)

Output

输出最长路径长度

Sample Input

1
5 4
1 3 3
2 3 4
3 4 1
3 5 2

Sample Output

6

Solution

在拓扑排序过程中 dp d p dp[u] d p [ u ] 表示从起点(即原图中入度为 0 0 的点)走到u的最长路径长度,如果当前 u u 点入度为0,那么要删去所有 u u 点的出边uv,那么有转移 dp[v]=max(dp[v],dp[u]+w(u,v)) d p [ v ] = m a x ( d p [ v ] , d p [ u ] + w ( u , v ) ) max(dp[u]) m a x ( d p [ u ] ) 即为答案

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=10001;
int T,n,m,dp[maxn],du[maxn];
vector<P>g[maxn];
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)g[i].clear(),dp[i]=du[i]=0;
        while(m--)
        {
            int u,v,w;
            scanf("%d%d%d",&u,&v,&w);
            g[u].push_back(P(v,w));
            du[v]++;
        }
        queue<int>que;
        for(int i=1;i<=n;i++)
            if(!du[i])que.push(i);
        while(!que.empty())
        {
            int u=que.front();
            que.pop();
            for(int i=0;i<g[u].size();i++)
            {
                int v=g[u][i].first,w=g[u][i].second;
                du[v]--;
                if(!du[v])que.push(v);
                dp[v]=max(dp[v],dp[u]+w);
            }
        }
        int ans=0;
        for(int i=1;i<=n;i++)ans=max(ans,dp[i]);
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值