计蒜客 17120 Xor(在线倍增LCA)

16 篇文章 0 订阅
15 篇文章 0 订阅

Description

给出一棵 n n 个节点的树,第i个节点点权为 ai a i ,有 q q 次查询,每次给出三个整数a,b,k,假设 a a b的树上简单路径编号为 t0,t1,....,tm t 0 , t 1 , . . . . , t m ,要查询 t0,tk,...,tpk(pkm) t 0 , t k , . . . , t p k ( p k ≤ m ) 这些点的点权异或和

Input

多组用例,每组用例输入两个整数 n,q n , q 表示点数和查询数,之后 n1 n − 1 行每行输入两个整数 u,v u , v 表示一条树边,之后输入 n n 个整数ai表示第 i i 个点的点权,最后q行每行输入三个整数 a,b,k a , b , k 表示一组查询 (n5104,q5105,1ai109,1a,b,kn) ( ∑ n ≤ 5 ⋅ 10 4 , ∑ q ≤ 5 ⋅ 10 5 , 1 ≤ a i ≤ 10 9 , 1 ≤ a , b , k ≤ n )

Output

对于每组用例,输出查询结果

Sample Input

5 6
1 5
4 1
2 1
3 2
19
26
0
8
17
5 5 1
1 3 2
3 2 1
5 4 2
3 4 4
1 4 5

Sample Output

17
19
26
25
0
19

Solution

在线倍增求 LCA L C A 和快速找到一个点的第 x x 级祖先,当k较大时,被计算的点不是很多,直接从 a a 开始往上找其k级祖先(不要越过两点的 LCA L C A ),然后从 b b 开始往上找即可,注意从b开始时要去掉路径末端多余点的影响,当 k k 较小时,预处理从一个点到根节点每次跳k个点的点权异或和,用预处理的结果快速得到答案即可,具体操作见代码

Code

v#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
const int maxn=50005;
int n,q,val[maxn],p[maxn][17],deep[maxn],f[maxn][81],dp[maxn][81];
vector<int>g[maxn];
void dfs(int u,int fa)
{
    p[u][0]=fa;
    for(int i=1;i<=16;i++)p[u][i]=p[p[u][i-1]][i-1];
    f[u][1]=fa;
    for(int i=2;i<=80;i++)f[u][i]=f[f[u][i-1]][1];
    for(int i=1;i<=80;i++)dp[u][i]=dp[f[u][i]][i]^val[u];
    for(int i=0;i<g[u].size();i++)
    {
        int v=g[u][i];
        if(v==fa)continue;
        deep[v]=deep[u]+1;
        dfs(v,u);
    }
}
int lca(int a,int b)
{
    int i,j;
    if(deep[a]<deep[b])swap(a,b);
    for(i=0;(1<<i)<=deep[a];i++);
    i--;
    for(j=i;j>=0;j--)
        if(deep[a]-(1<<j)>=deep[b])
            a=p[a][j];
    if(a==b) return a;
    for(j=i;j>=0;j--)
    {
        if(p[a][j]&&p[a][j]!=p[b][j])
        {
            a=p[a][j];
            b=p[b][j];
        }
    }
    return p[a][0];
}
int find(int x,int step)//找到x第step级祖先 
{
    for(int i=0;i<=16;i++)
        if(step&(1<<i))
            x=p[x][i];
    return x;
}
int Solve1(int a,int b,int k)
{
    int c=lca(a,b);
    if(a==b)return val[a];
    else
    {
        int num=deep[a]+deep[b]-2*deep[c];
        b=find(b,num%k);
        if(deep[b]<deep[c])
        {
            int x=(deep[a]-deep[c])/k+1;
            b=find(a,x*k);
            return dp[a][k]^dp[b][k];
        }
        if((deep[c]-deep[b])%k==0)
        {
            return dp[a][k]^dp[b][k]^val[c];
        }
        int x=(deep[a]-deep[c])/k+1;
        int y=(deep[b]-deep[c])/k+1;
        int aa=find(a,x*k),bb=find(b,y*k);
        return dp[a][k]^dp[b][k]^dp[aa][k]^dp[bb][k];
    }
}
int Solve2(int a,int b,int k)
{
    int c=lca(a,b);
    int ans=val[a];
    int now=a;
    while(deep[now]>=deep[c])
    {
        if(deep[now]-deep[c]<k)break;
        now=find(now,k);
        ans^=val[now];
    }
    if(deep[now]+deep[b]-2*deep[c]>=k)
    {
        now=find(b,(deep[now]+deep[b]-2*deep[c])%k);
        ans^=val[now];
    }
    else return ans;
    while(deep[now]>deep[c])
    {
        if(deep[now]-deep[c]<=k)break;
        now=find(now,k);
        if(now==c)break;
        ans^=val[now];
    }
    return ans;
}
int main()
{
    while(~scanf("%d%d",&n,&q))
    {
        for(int i=1;i<=n;i++)g[i].clear();
        for(int i=1;i<n;i++)
        {
            int u,v;
            scanf("%d%d",&u,&v);
            g[u].push_back(v),g[v].push_back(u);
        }
        for(int i=1;i<=n;i++)scanf("%d",&val[i]);
        memset(f,0,sizeof(f));
        memset(p,0,sizeof(p));
        deep[0]=0;
        deep[1]=1;
        dfs(1,0);
        while(q--)
        {
            int a,b,k;
            scanf("%d%d%d",&a,&b,&k);
            if(k<=80)printf("%d\n",Solve1(a,b,k));
            else printf("%d\n",Solve2(a,b,k));
        }
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值