Description
在一个垂直的二维平板给出 n n 个目标的坐标,每次瞄完一个目标后实现在平板上移动的速度为,瞄准第 i i 个目标后射中的概率为,且第 i i 个目标只在第秒出现,也就是说只能在第 ti t i 秒瞄准该目标并射击,问射中目标数的期望值最大为多少
Input
第一行一整数 n n 表示目标个数,之后行每行输入四个数 xi,yi,ti,pi x i , y i , t i , p i 分别表示第 i i 个目标的坐标,出现的时刻以及射中的概率
Output
输出射中目标数量期望值的最大值
Sample Input
1
0 0 0 0.5
Sample Output
0.5000000000
Solution
把所有目标按出现时刻排序,如果打完第 i i 个目标后要打第个目标,那么需要满足 dis(i,j)≤tj−ti,j>i d i s ( i , j ) ≤ t j − t i , j > i ,用 dp[i] d p [ i ] 表示最后一个打的是第 i i 个目标的最大期望值,那么,且有转移 dp[j]=max(dp[i]+pj),dis(i,j)≤tj−ti,j>i d p [ j ] = m a x ( d p [ i ] + p j ) , d i s ( i , j ) ≤ t j − t i , j > i , max(dp[i],1≤i≤n) m a x ( d p [ i ] , 1 ≤ i ≤ n ) 即为答案
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=1005;
int n;
struct node
{
int x,y,t;
double p;
bool operator<(const node &b)const
{
return t<b.t;
}
}a[maxn];
double dp[maxn];
int main()
{
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d%d%d%lf",&a[i].x,&a[i].y,&a[i].t,&a[i].p);
sort(a+1,a+n+1);
for(int i=1;i<=n;i++)dp[i]=a[i].p;
double ans=dp[1];
for(int i=2;i<=n;i++)
{
for(int j=i-1;j>=1;j--)
{
ll D=(ll)(a[i].x-a[j].x)*(a[i].x-a[j].x)+(ll)(a[i].y-a[j].y)*(a[i].y-a[j].y);
ll T=(ll)(a[i].t-a[j].t)*(a[i].t-a[j].t);
if(D<=T)dp[i]=max(dp[i],dp[j]+a[i].p);
}
ans=max(ans,dp[i]);
}
printf("%.9f\n",ans);
return 0;
}