GYM 101653 V.Towers(dfs)

125 篇文章 0 订阅

Description
一个n*n的数独,每一行每一列数字都不同,一个数组表示该位置放这么高的塔,已经填好一些数字并且给出一些限制,如某一行左边的限制为从左边看这一行能看到多少塔,上下左右都可能有类似的限制,问是否存在一个合法的数独满足这些条件,如果有则输出一组合法解,否则输出no
Input
第一行一整数T表示用例组数,每组用例首先输入一整数n表示数独大小,然后是一个(n+2)*(n+2)的矩阵,第一行和最后一列分别表示上面和下面的限制,第一列和最后一列分别表示左边和右边的限制,-表示没有限制,中间的n*n矩阵表示数独初始状态,-表示没填数(3<=n<=5)
Output
如果存在一个合法的数独满足这些条件则输出一组合法解,否则输出no
Sample Input
这里写图片描述
Sample Output
这里写图片描述
Solution
暴力dfs,dfs的时候先不管四周的限制,只根据数独的限制去放数,等所有数字都放完再判断其是否满足周围的限制
Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
#define INF 0x3f3f3f3f
#define maxn 7
int T,n,flag,mark[maxn],a[maxn][maxn];
char s[maxn][maxn];
bool check1()
{
    for(int i=1;i<=n;i++)
    {
        memset(mark,0,sizeof(mark));
        for(int j=1;j<=n;j++)
            if(a[i][j])
            {
                if(mark[a[i][j]])return 0;
                mark[a[i][j]]=1;
            }
    }
    for(int j=1;j<=n;j++)
    {
        memset(mark,0,sizeof(mark));
        for(int i=1;i<=n;i++)
            if(a[i][j])
            {
                if(mark[a[i][j]])return 0;
                mark[a[i][j]]=1;
            }
    }
    return 1;
}
bool check2()
{
    for(int i=1;i<=n;i++)
    {
        int temp,num;
        if(s[i][0]!='-')
        {
            temp=num=0;
            for(int j=1;j<=n;j++)
                if(a[i][j]>temp)temp=a[i][j],num++;
            if(num!=s[i][0]-'0')return 0;
        }
        if(s[i][n+1]!='-')
        {
            temp=num=0;
            for(int j=n;j>=1;j--)
                if(a[i][j]>temp)temp=a[i][j],num++;
            if(num!=s[i][n+1]-'0')return 0;
        }
    }
    for(int j=1;j<=n;j++)
    {
        int temp,num;
        if(s[0][j]!='-')
        {
            temp=num=0;
            for(int i=1;i<=n;i++)
                if(a[i][j]>temp)temp=a[i][j],num++;
            if(num!=s[0][j]-'0')return 0;
        }
        if(s[n+1][j]!='-')
        {
            temp=0,num=0;
            for(int i=n;i>=1;i--)
                if(a[i][j]>temp)temp=a[i][j],num++;
            if(num!=s[n+1][j]-'0')return 0;
        }
    }
    return 1;
}
int dfs(int x,int y)
{
    if(flag)return 1;
    if(y==n+1)x++,y=1;
    if(x==n+1)
    {
        if(check2()==1)
        {
            flag=1;
            return 1;
        }
        return 0;
    }
    if(a[x][y])return dfs(x,y+1);
    int gg=1;
    for(int i=1;i<=n;i++)
    {
        a[x][y]=i;
        if(check1())
        {
            if(dfs(x,y+1))
            {
                gg=0;
                flag=1;
                return 1;
            }
        }
        a[x][y]=0;
    }
    if(gg)return 0;
}
int main()
{
    scanf("%d",&T);
    while(T--)
    {
        scanf("%d",&n);
        for(int i=0;i<=n+1;i++)scanf("%s",s[i]);
        memset(a,0,sizeof(a));
        for(int i=1;i<=n;i++)
            for(int j=1;j<=n;j++)
                if(s[i][j]>='0'&&s[i][j]<='9')
                    a[i][j]=s[i][j]-'0';
        flag=0;
        dfs(1,1);
        if(flag)
        {
            for(int i=1;i<=n;i++)
            {
                for(int j=1;j<=n;j++)printf("%d",a[i][j]);
                printf("\n");
            }
        }
        else printf("no\n");
        printf("\n");
    }
    return 0;
}
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值