Gym 101138J Valentina and the Gift Tree 以及树链剖分入门讲解

Gym 101138J Valentina and the Gift Tree(树链剖分)

树链剖分,线段树

第一次学树链剖分。。就搞了这么难一题。。各种代码看了好几天才明白。。

传送门:CodeForce

传送门:HustOJ

要是想要测试数据和别人的代码,可以去这个OJ(不要干坏事哦~)
传送门:Hackerearth


题意

建议读原题。
一棵树,100000节点,树上每个节点有权值,整数。有500000个查询,每次查询给树上两点。求树上两点形成的路径上(包括两端点),最大连续子区间权值和。
关于连续子区间权值和,比如第一个样例的第一个查询,路径权值是2 -1 -2 5。连续子区间权值和是5。


思路

10w节点,50w查询。。肯定要树链剖分。。关于最大连续子区间权值和,用线段树维护。

先说说线段树维护最大子区间权值和。
维护四个信息,最大前缀,最大后缀,最大子区间,区间和。
区间合并时,大区间最大前缀=max(左子最大前缀,左子区间和+右子最大前缀)。后缀同理。
大区间最大子区间=max(左子最大子区间,右子最大子区间,左子最大后缀+右子最大前缀)

struct STREE
{
    //维护最大前缀,最大后缀,最大子区间,区间和
    LL MPrefix, MPostfix, Sum, MaxValue;
    STREE() { MPostfix=MPrefix=Sum=0;MaxValue=-loo; }
    STREE(LL l, LL r, LL s, LL m) { MPrefix=l;MPostfix=r; Sum=s;MaxValue=m; }
    STREE operator + (const STREE &a)const 
    {
        STREE New;
        New.MPrefix=max(MPrefix, Sum+a.MPrefix);
        New.MPostfix=max(a.MPostfix, a.Sum+MPostfix);
        New.Sum=Sum+a.Sum;
        New.MaxValue=max(a.MaxValue, max(MaxValue, MPostfix+a.MPrefix));
        return New;
    }
}Stree[MAXN<<2];

然后是树链剖分。树链剖分其实就是将一棵树节点重新编号,存到数据结构(比如线段树)里面。
为什么要重新编号呢?因为线段树可以区间更新、区间查询,而如果不重新给树编号,那么我们无法最大程度的利用区间的特性。
剖分后,有重链,轻链的说法。重链就是由大部分节点构成的链。
我们通过重新编号,使得重链在线段树里面连续保存,这样对树更新时,占了大部分节点的重链就可以区间更新,而其他轻链进行单点更新,加快速度。
重新编号的方法就是DFS,有条件的DFS。

关于树链剖分的讲解:

  • 整体性的讲解:%%%
  • 具体步骤方法:%%%
  • 带图的单步操作:%%%

我的理解
第一次DFS时,获取的信息有深度,父节点,子树节点个数(SonAmount),重儿子编号。

void dfs1(int n)//调用之前初始化Depth[1]=1
{
    SonAmount[n]=1;
    for(int i=0;i<G[n].size();i++)
    {
        int to=G[n][i];
        if(Depth[to]) continue;
        Depth[to]=Depth[n]+1;
        Father[to]=n;
        dfs1(to);
        SonAmount[n]+=SonAmount[to];
        if(SonAmount[to]>SonAmount[Hson[n]]) Hson[n]=to;
        //如果to的树节点数目比目前n的重儿子多 那么to是n的重儿子
    }
    return;
}

第二次DFS时获取的信息有DFS序号,新序号下的点权(边权),重链链首。注意到每个节点时,先DFS重儿子,这样如果有一条由许多重儿子构成的重链,那么他们的dfs序号一定是连续的,重链头也就是depth最小的那个节点。保证了线段树区间更新。

void dfs2(int n, int prev)
{
    Dfsnum[n]=++dfscount;//dfs序号 建线段树用
    TreeValue[dfscount]=Val[n];//为线段树保存点权
    TopOfHeavyChain[n]=prev;//重链头
    if(!Hson[n]) return;
    dfs2(Hson[n], prev);
    for(int i=0;i<G[n].size();i++)//dfs轻儿子
    {
        int to=G[n][i];
        if(to==Hson[n]||to==Father[n]) continue;
        dfs2(to, to);
    }
}

最后查询时,查询两个节点ab,如果不在同一条重链上,那么往上跳,跳的方法就是不断查询a到fa=TopOfHeavyChain[a],以及b和fb=TopOfHeavyChain[b],a=father[fa],b=father[fb],到一条重链后最后查询一次这条重链。就结束了。详见代码,说不太清。


代码

#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#include<string>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<stack>
#define _ ios_base::sync_with_stdio(0);cin.tie(0);
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;

const int MAXN=100100;
const int oo=0x3f3f3f3f;
typedef long long LL;
const LL loo=4223372036854775807ll;
vector<int> G[MAXN];
int Val[MAXN], Hson[MAXN], SonAmount[MAXN], Father[MAXN], Depth[MAXN];
int Dfsnum[MAXN], TreeValue[MAXN], TopOfHeavyChain[MAXN];
int dfscount;

void AddEdge(int from, int to)
{
    G[from].push_back(to);
    G[to].push_back(from);
}

void dfs1(int n)
{
    SonAmount[n]=1;
    for(int i=0;i<G[n].size();i++)
    {
        int to=G[n][i];
        if(Depth[to]) continue;
        Depth[to]=Depth[n]+1;
        Father[to]=n;
        dfs1(to);
        SonAmount[n]+=SonAmount[to];
        if(SonAmount[to]>SonAmount[Hson[n]]) Hson[n]=to;
        //如果to的树节点数目比目前n的重儿子多 那么to是n的重儿子
    }
    return;
}

void dfs2(int n, int prev)
{
    Dfsnum[n]=++dfscount;//dfs序号 建线段树用
    TreeValue[dfscount]=Val[n];//为线段树保存点权
    TopOfHeavyChain[n]=prev;//重链头
    if(!Hson[n]) return;
    dfs2(Hson[n], prev);
    for(int i=0;i<G[n].size();i++)
    {
        int to=G[n][i];
        if(to==Hson[n]||to==Father[n]) continue;
        dfs2(to, to);
    }
}

struct STREE
{
    LL MPrefix, MPostfix, Sum, MaxValue;
    //STREE(LL x) { MPostfix=MPrefix=Sum=MaxValue=x; }
    STREE() { MPostfix=MPrefix=Sum=0;MaxValue=-loo; }
    STREE(LL l, LL r, LL s, LL m) { MPrefix=l;MPostfix=r; Sum=s;MaxValue=m; }
    STREE operator + (const STREE &a)const 
    {
        STREE New;
        New.MPrefix=max(MPrefix, Sum+a.MPrefix);
        New.MPostfix=max(a.MPostfix, a.Sum+MPostfix);
        New.Sum=Sum+a.Sum;
        New.MaxValue=max(a.MaxValue, max(MaxValue, MPostfix+a.MPrefix));
        return New;
    }
}Stree[MAXN<<2];

void build(int l, int r, int rt)
{
    if(l==r)
    {
        Stree[rt].MaxValue=Stree[rt].MPostfix=Stree[rt].MPrefix=Stree[rt].Sum=TreeValue[l];
        return;
    }
    int m=(l+r)>>1;
    build(lson);
    build(rson);
    Stree[rt]=Stree[rt<<1]+Stree[rt<<1|1];
    return;
}

STREE query(int L, int R, int l, int r, int rt)
{
    if(L<=l&&r<=R) return Stree[rt];
    int m=(l+r)>>1;
    if(m< L) return query(L, R, rson);
    if(m>=R) return query(L, R, lson);
    return (query(L, R, lson)+query(L, R, rson));
}

LL solve(int a, int b,int n)
{
    STREE lc, rc;
    int fa=TopOfHeavyChain[a], fb=TopOfHeavyChain[b];
    while(fa!=fb)
    {
        if(Depth[fa]>Depth[fb])
        {
            lc=query(Dfsnum[fa], Dfsnum[a], 1, n, 1)+lc;
            a=Father[fa];
            fa=TopOfHeavyChain[a];
        }
        else
        {
            rc=query(Dfsnum[fb], Dfsnum[b], 1, n, 1)+rc;
            b=Father[fb];
            fb=TopOfHeavyChain[b];
        }
    }
    if(Depth[a]>Depth[b])
    {
        lc=query(Dfsnum[b], Dfsnum[a], 1, n, 1)+lc;
    }
    else
    {
        rc=query(Dfsnum[a], Dfsnum[b], 1, n, 1)+rc;
    }
    swap(lc.MPostfix, lc.MPrefix);
    return ((lc+rc).MaxValue);
}
int main()
{
    _
    int n;cin>>n;
    for(int i=1;i<n;i++)
    {
        int ta, tb;
        cin>>ta>>tb;
        AddEdge(ta, tb);
    }
    for(int i=1;i<=n;i++) cin>>Val[i];
    Depth[1]=1;dfs1(1);dfs2(1, 1);
    build(1, n, 1);
    int m;
    cin>>m;
    while(m--)
    {
        int ta, tb;
        cin>>ta>>tb;
        cout<<solve(ta, tb, n)<<endl;
    }
    //system("pause");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值