CodeForces 87 C.Interesting Game(博弈论+数论)

201 篇文章 10 订阅
38 篇文章 1 订阅

Description

两个人玩游戏,起初有一堆 n n 个石子,每步一个人可以选取一堆将其分成k堆使得 k2 k ≥ 2 ,且每堆石子的数量 a1,...,ak a 1 , . . . , a k 满足 a2a1=...=akak1=1 a 2 − a 1 = . . . = a k − a k − 1 = 1 ,如果某人无法完成该操作则失败,问先手第一次操作最少分成几堆可以必胜

Input

一个整数 n(1n105) n ( 1 ≤ n ≤ 10 5 )

Output

若先手必胜则输出其第一步 k k 值的最小值,否则输出1

Sample Input

3

Sample Output

2

Solution

n n 可以分成k,...,k+j1 j j 堆,那么有j(2k+j1)2=n,也即 j(2k+j1)=2n j ( 2 k + j − 1 ) = 2 n ,由于 k1 k ≥ 1 ,故 j<2k+j1 j < 2 k + j − 1 ,也即 j j 必然是n的因子且 j<n j < n

因此对于每个石子堆数 i i 直接枚举其因子j,判断是否存在合法的 k k ,若存在则可以求出该种划分的sg值,显然后继状态不会超过 i i 个,直接根据这些后继状态的 sg s g 值即可求出当前状态的 sg s g 值,注意到对于一种划分方案 i=k+(k+1)+...+(k+j1) i = k + ( k + 1 ) + . . . + ( k + j − 1 ) ,其 sg s g 值为 Xorklk+j1sg[l]=sum[k+j1] Xor sum[k1] X o r k ≤ l ≤ k + j − 1 s g [ l ] = s u m [ k + j − 1 ]   X o r   s u m [ k − 1 ] ,维护 sg s g 值前缀和 sum s u m 即可加速该步,时间复杂度 O(nn) O ( n n )

Code

#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=100001;
int n,sg[maxn],f[maxn],sum[maxn];
int main()
{
    int ans=-1;
    scanf("%d",&n);
    sg[1]=sg[2]=0;
    for(int i=3;i<=n;i++)
    {
        for(int j=2;j*j<=2*i;j++)
            if(2*i%j==0)
            {
                int k=2*i/j-(j-1);
                if(k>0&&k%2==0)
                {
                    k/=2;
                    int temp=sum[k+j-1]^sum[k-1];
                    f[temp]=i;
                    if(i==n&&!temp&&ans==-1)ans=j;
                }
            }
        for(int j=0;;j++)
            if(f[j]!=i)
            {
                sg[i]=j;
                sum[i]=sum[i-1]^sg[i];
                break;
            }
    }
    printf("%d\n",ans);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值