Description
两个人玩游戏,起初有一堆 n n 个石子,每步一个人可以选取一堆将其分成堆使得 k≥2 k ≥ 2 ,且每堆石子的数量 a1,...,ak a 1 , . . . , a k 满足 a2−a1=...=ak−ak−1=1 a 2 − a 1 = . . . = a k − a k − 1 = 1 ,如果某人无法完成该操作则失败,问先手第一次操作最少分成几堆可以必胜
Input
一个整数 n(1≤n≤105) n ( 1 ≤ n ≤ 10 5 )
Output
若先手必胜则输出其第一步 k k 值的最小值,否则输出
Sample Input
3
Sample Output
2
Solution
若 n n 可以分成这 j j 堆,那么有,也即 j(2k+j−1)=2n j ( 2 k + j − 1 ) = 2 n ,由于 k≥1 k ≥ 1 ,故 j<2k+j−1 j < 2 k + j − 1 ,也即 j j 必然是的因子且 j<n−−√ j < n
因此对于每个石子堆数 i i 直接枚举其因子,判断是否存在合法的 k k ,若存在则可以求出该种划分的值,显然后继状态不会超过 i√ i 个,直接根据这些后继状态的 sg s g 值即可求出当前状态的 sg s g 值,注意到对于一种划分方案 i=k+(k+1)+...+(k+j−1) i = k + ( k + 1 ) + . . . + ( k + j − 1 ) ,其 sg s g 值为 Xork≤l≤k+j−1sg[l]=sum[k+j−1] Xor sum[k−1] X o r k ≤ l ≤ k + j − 1 s g [ l ] = s u m [ k + j − 1 ] X o r s u m [ k − 1 ] ,维护 sg s g 值前缀和 sum s u m 即可加速该步,时间复杂度 O(nn−−√) O ( n n )
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=100001;
int n,sg[maxn],f[maxn],sum[maxn];
int main()
{
int ans=-1;
scanf("%d",&n);
sg[1]=sg[2]=0;
for(int i=3;i<=n;i++)
{
for(int j=2;j*j<=2*i;j++)
if(2*i%j==0)
{
int k=2*i/j-(j-1);
if(k>0&&k%2==0)
{
k/=2;
int temp=sum[k+j-1]^sum[k-1];
f[temp]=i;
if(i==n&&!temp&&ans==-1)ans=j;
}
}
for(int j=0;;j++)
if(f[j]!=i)
{
sg[i]=j;
sum[i]=sum[i-1]^sg[i];
break;
}
}
printf("%d\n",ans);
return 0;
}