SPOJ 34096 DIVCNTK - Counting Divisors (general)(min_25筛)

38 篇文章 0 订阅

Description

给出 n,k n , k ,求 S(n)=i=1nσ0(ik) S ( n ) = ∑ i = 1 n σ 0 ( i k ) ,其中 σ0(x) σ 0 ( x ) 表示 x x 的因子数

Input

第一行一整数T表示用例组数,每组用例输入两个整数 n,k(1T104,1n,k1010) n , k ( 1 ≤ T ≤ 10 4 , 1 ≤ n , k ≤ 10 10 )

Output

输出 S(n) S ( n ) ,结果模 264 2 64

Sample Input

5
1 3
2 3
3 3
10 3
100 3

Sample Output

1
5
9
73
2302

Solution

显然 S(n) S ( n ) 为积性函数,且对于素数 p p S(p)=k+1,S(pe)=ke+1,故直接用洲阁筛或者 min_25 m i n _ 25 筛,由于 S(p) S ( p ) p p 0次多项式,只需维护区间素数个数即可,模 264 2 64 只需用 unsigned long long u n s i g n e d   l o n g   l o n g 自动溢出即可

Code

#include<cstdio>
#include<algorithm>
using namespace std;
typedef unsigned long long ll;
#define maxn 240005
int p[maxn],f[maxn],np=0,m=120000;
void get_prime(int n)
{
    for(int i=2;i<=n;i++)
    {
        if(!f[i])p[++np]=i;
        for(int j=1;j<=np&&i*p[j]<=n;j++)
        {
            f[i*p[j]]=1;
            if(i%p[j]==0)break;
        }
    }
    np--;
}
ll val[maxn],n,K;
int nn,cnt;
void init()
{
    nn=1;
    while((ll)nn*nn<n)nn++;
    cnt=0;
    for(ll i=1;i<=n;i=n/(n/i)+1)val[++cnt]=n/i;
}
int ID(ll x)
{
    if(x>=nn)return n/x;
    return cnt-x+1;
}
ll F(int p,int e)
{
    return K*e+1;
}
ll g0[maxn];
void Get_g(ll n)
{
    for(int i=1;i<=cnt;i++)g0[i]=val[i]-1;
    for(int j=1;j<=np;j++)
        for(int i=1;i<=cnt&&(ll)p[j]*p[j]<=val[i];i++)
        {
            int k=ID(val[i]/p[j]);
            g0[i]=g0[i]-(g0[k]-(j-1));
        }   
    return ;
}
ll S(ll i,int j)
{
    if(i<=1||p[j]>i)return 0;
    int k=ID(i);
    ll ans=(K+1)*(g0[k]-(j-1));
    for(int k=j;k<=np&&(ll)p[k]*p[k]<=i;k++)
    {
        ll p1=p[k],p2=(ll)p[k]*p[k];
        for(int e=1;p2<=i;p1=p2,p2*=p[k],e++)
            ans+=S(i/p1,k+1)*F(p[k],e)+F(p[k],e+1); 
    }
    return ans;
}
int main()
{
    int T;
    scanf("%d",&T);
    get_prime(m);
    while(T--)
    {
        scanf("%llu%llu",&n,&K);
        init();
        Get_g(n);
        printf("%llu\n",S(n,1)+1);
    } 
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值