HDU 6427 Problem B. Beads(polya+数论+素因子分解Pollard-rho)

201 篇文章 10 订阅
13 篇文章 0 订阅

Description

m m 种颜色给一串长度为n的项链染色,旋转和翻转视作一种方案,且颜色平移也视为一种方案,问染色方案数

Input

第一行一整数 T T 表示用例组数,每组用例输入两个整数n,m

(1T30,3n1018,2m1018,n,m/|998244353) ( 1 ≤ T ≤ 30 , 3 ≤ n ≤ 10 18 , 2 ≤ m ≤ 10 18 , n , m ⧸ | 998244353 )

Output

输出染色方案数,结果模 998244353 998244353

Sample Input

5
3 2
4 2
8 5
9 5
2333 333

Sample Output

2
4
5079
22017
544780894

Solution

polya p o l y a ,变换群大小为 2nm 2 n m ,对于旋转和颜色平移的 nm n m 个变换,若一个染色方案能够在颜色平移为 g g (即1颜色变成 g g 颜色),旋转平移为d(即 1 1 位置移动到d位置)后不变,那么从 1 1 走回1的这 ngcd(d,n) n g c d ( d , n ) 个位置,其颜色必然要整数次从 1 1 变成1,而 1 1 颜色变回1颜色至少需要 mgcd(g,m) m g c d ( g , m ) 次,故这 nm n m 个变换下不变的染色方案数为

d=1nmgcd(d,n)g=1m[mgcd(g,m)|ngcd(d,n)]===d|nφ(d)mndg|mφ(g)[g|d]d|nφ(d)mndg|gcd(d,m)φ(g)d|nφ(d)mndgcd(d,m) ∑ d = 1 n m g c d ( d , n ) ∑ g = 1 m [ m g c d ( g , m ) | n g c d ( d , n ) ] = ∑ d | n φ ( d ) m n d ∑ g | m φ ( g ) [ g | d ] = ∑ d | n φ ( d ) m n d ∑ g | g c d ( d , m ) φ ( g ) = ∑ d | n φ ( d ) m n d g c d ( d , m )

对于翻转和颜色平移的 nm n m 个变换

1. n n 为奇数,那么翻转轴为一个位置和一个中点构成,此时该位置颜色不能变化,故颜色变换只能为恒同,在翻转下不变的染色方案数为nmn+12

2. n n 为偶数,那么翻转轴有两种,第一种是连接两个位置,此时这两个位置颜色也不能变换,颜色变化只能为恒同,在该类变换下不变的染色方案数为n2mn2+1;第二种是连接两个中点,此时若 m m 为偶数,那么此时颜色变换可以为恒同也可以为颜色平移m2,若 m m 为奇数则颜色变换只能恒同,故在该类变换下不变的染色方案数为gcd(2,m)n2mn2

累加以上三个值之后除以 2nm 2 n m 即可,注意 n n 比较大所以要用Pollard_rho算法分解质因数

Code

#include<cstdio>
#include<algorithm>
#include<cmath>
#include<vector>
#include<map>
#include<ctime>
using namespace std;
typedef long long ll;
typedef long double ld;
typedef pair<ll,int>P;
#define maxn 200001
#define mod 998244353
int mul(int x,int y)
{
    ll z=1ll*x*y;
    return z-z/mod*mod;
}
int add(int x,int y)
{
    x+=y;
    if(x>=mod)x-=mod;
    return x; 
}
int Pow(ll x,ll y)
{
    x%=mod,y%=(mod-1);
    int ans=1;
    while(y)
    {
        if(y&1)ans=mul(ans,x);
        x=mul(x,x);
        y>>=1;
    }
    return ans;
}
ll gcd(ll a,ll b)
{
    return b?gcd(b,a%b):a;
}
ll Mul(ll a,ll b,ll c)
{
    return (a*b-(ll)(a/(ld)c*b+1e-3)*c+c)%c;
}
ll Pow(ll a,ll b,ll c)
{
    ll ans=1;
    while(b)
    {
        if(b&1)ans=Mul(ans,a,c);
        a=Mul(a,a,c);
        b>>=1;
    }
    return ans;
}
int cnt=12,prime[]={2,3,5,7,11,13,17,19,23,29,31,37};
bool isprime(ll x)
{
    if(x==2)return 1;
    if(x==1||!(x&1))return 0;
    ll k=x-1,t=0;
    for(;!(k&1);k>>=1)t++;
    for(int i=0;i<cnt&&prime[i]<x;i++) 
    {
        ll g=Pow(prime[i],k,x);
        for(int j=0;j<t;j++)
        {
            ll g0=Mul(g,g,x);
            if(g0==1&&g!=1&&g!=x-1)return 0;
            g=g0;
        }
        if(g!=1)return 0;
    }
    return 1;
}
vector<ll>pf;
vector<P>fact;
ll F(ll t,ll x,ll c)
{
    return (Mul(t,t,x)+c)%x;
}
void pollardRho(ll x)
{
    if(isprime(x)) 
    {
        pf.push_back(x);
        return;
    }
    while(1) 
    {
        ll c=rand()%(x-1)+1,p=rand()%x,q=F(p,x,c);
        while(p!=q) 
        {
            ll d=gcd(x,abs(p-q));
            if(d!=1)
            {
                pollardRho(d);
                pollardRho(x/d);
                return;
            }
            p=F(p,x,c);q=F(F(q,x,c),x,c);
        }
    }
}
void Deal(ll x)
{
    pf.clear();
    fact.clear();
    pollardRho(x);
    sort(pf.begin(),pf.end());
    for(int i=0;i<pf.size();i++)
    {
        int temp=1;
        while(i<pf.size()-1&&pf[i]==pf[i+1])i++,temp++;
        fact.push_back(P(pf[i],temp));
    }
}
int T,ans;
ll n,m;
void dfs(int pos,ll d,ll phi)
{
    if(pos==fact.size())
    {
        ans=add(ans,mul(mul(phi%mod,Pow(m,n/d)),gcd(d,m)%mod));
        return ;
    }
    dfs(pos+1,d,phi);
    ll x=fact[pos].first;
    d*=x,phi*=x-1;
    for(int i=1;i<=fact[pos].second;i++)
    {
        dfs(pos+1,d,phi);
        d*=x,phi*=x;
    }
}
int main()
{
    srand(time(0));
    scanf("%d",&T);
    while(T--)
    {
        scanf("%lld%lld",&n,&m);
        Deal(n);
        ans=0;
        if(n&1)ans=mul(n%mod,Pow(m,n/2+1));
        else 
        {
            ans=mul(n/2%mod,Pow(m,n/2+1));
            ans=add(ans,mul(mul(gcd(m,2),n/2%mod),Pow(m,n/2)));
        }
        dfs(0,1,1);
        ans=mul(ans,Pow(mul(2,mul(n%mod,m%mod)),mod-2));
        printf("%d\n",ans);
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值