Description
平日里写 h a s h hash hash的时候,总有某些选手由于脸黑而导致惨遭卡模数,然后一些恶意卡模数的出题人也因此身败名裂。为了防止被卡,我们用一种高级的随机方式来代替原来的线性随机生成,也就是所谓的随机树!
现在有一棵编号为 0 0 0~ n − 1 n-1 n−1的有根树,其中 0 0 0是树的根。每个节点初始有一个值 T i T_i Ti。现在要求支持一下两种操作:
1. 1. 1.给出两个正整数 u u u和 x x x,我们将 T u T_u Tu的值乘以 x x x,我们将这种操作称为 S E E D SEED SEED操作。
2. 2. 2.给出一个正整数 i i i,询问 S i S_i Si以及它一共有多少个正约数。其中 S i S_i Si表示以 i i i为根的子树所有点的权值的乘积,我们将这种操作称为 R A N D RAND RAND操作。
容易发现,这样得到的答案还是很随机的。(其实不是)
你需要回答每一次的询问,由于一个数的约数个数可能非常多,这个数也可以非常大,你只需要把答案对 1 0 9 + 7 10^9+7 109+7取模就可以了。
Input
第一行一个正整数 n n n,表示节点个数。
接下来 n − 1 n-1 n−1行,每行两个正整数 u u u和 v v v,表示 u u u是 v v v的父节点。
接下来一行 n n n个正整数,分别表示每个节点的初始权值 T i T_i Ti。
接下来一行一个正整数 q q q,表示操作的个数。
接下来 q q q行,每行是以下两种情况之一:
1. S E E D u x 1.SEED\ u\ x 1.SEED u x: 表示将 u u u节点的权值乘以 x x x。
2. R A N D i 2.RAND\ i 2.RAND i: 表示询问 S i S_i Si以及它一共有多少个正约数。
数据保证在任意时刻,每个点的权值不可能拥有超过 13 13 13的素因子,也就是说,每个数的素因子最多只有 2 , 3 , 5 , 7 , 11 , 13 2,3,5,7,11,13 2,3,5,7,11,13这六种可能。
( 1 ≤ n , q ≤ 1 0 5 , 1 ≤ x ≤ 1 0 9 ) (1\le n,q\le 10^5,1\le x\le 10^9) (1≤n,q≤105,1≤x≤109)
Output
每一行两个整数,对应一个 R A N D RAND RAND操作,你需要输出所求的权值以及它的正约数个数,答案对于 1 0 9 + 7 10^9+7 109+7取模即可。
Sample Input
8
0 1
0 2
1 3
2 4
2 5
3 6
3 7
7 3 10 8 12 14 40 15
3
RAND 1
SEED 1 13
RAND 1
Sample Output
14400 63
187200 126
Solution
线段树维护区间中每个素因子幂指数之和,支持单点修改和区间求和,时间复杂度 O ( 6 ( n + q ) l o g n ) O(6(n+q)logn) O(6(n+q)logn)
Code
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#include<ctime>
using namespace std;
typedef long long ll;
typedef pair<int,int>P;
const int INF=0x3f3f3f3f,maxn=100005;
#define mod 1000000007
int add(int x,int y)
{
x+=y;
if(x>=mod)x-=mod;
return x;
}
int mul(int x,int y)
{
ll z=1ll*x*y;
return z-z/mod*mod;
}
int Pow(int x,int y)
{
int ans=1;
while(y)
{
if(y&1)ans=mul(ans,x);
x=mul(x,x);
y>>=1;
}
return ans;
}
int p[]={2,3,5,7,11,13};
#define ls (t<<1)
#define rs ((t<<1)|1)
struct node
{
int x[6];
void init()
{
memset(x,0,sizeof(x));
}
node operator+(const node &b)const
{
node c;
for(int i=0;i<6;i++)c.x[i]=x[i]+b.x[i];
return c;
}
int Val()
{
int ans=1;
for(int i=0;i<6;i++)ans=mul(ans,x[i]+1);
return ans;
}
}T[maxn<<2];
void push_up(int t)
{
T[t]=T[ls]+T[rs];
}
void modify(int x,int l,int r,int t,node v)
{
if(l==r)
{
T[t]=T[t]+v;
return ;
}
int mid=(l+r)/2;
if(x<=mid)modify(x,l,mid,ls,v);
else modify(x,mid+1,r,rs,v);
push_up(t);
}
node query(int L,int R,int l,int r,int t)
{
if(L<=l&&r<=R)return T[t];
int mid=(l+r)/2;
node ans;
ans.init();
if(L<=mid)ans=ans+query(L,R,l,mid,ls);
if(R>mid)ans=ans+query(L,R,mid+1,r,rs);
return ans;
}
node Solve(int n)
{
node ans;
ans.init();
for(int i=0;i<6;i++)
while(n%p[i]==0)n/=p[i],ans.x[i]++;
return ans;
}
int n,m,a[maxn],L[maxn],R[maxn],dfn=0;
vector<int>g[maxn];
void dfs(int u)
{
L[u]=++dfn;
for(int i=0;i<g[u].size();i++)dfs(g[u][i]);
R[u]=dfn;
}
int main()
{
scanf("%d",&n);
for(int i=1;i<n;i++)
{
int u,v;
scanf("%d%d",&u,&v);
g[u].push_back(v);
}
dfs(0);
for(int i=0;i<n;i++)
{
int x;
scanf("%d",&x);
modify(L[i],1,n,1,Solve(x));
}
scanf("%d",&m);
while(m--)
{
char s[10];
int u,x;
scanf("%s%d",s,&u);
if(s[0]=='S')
{
scanf("%d",&x);
modify(L[u],1,n,1,Solve(x));
}
else
{
node ans=query(L[u],R[u],1,n,1);
int res=1;
for(int i=0;i<6;i++)res=mul(res,Pow(p[i],ans.x[i]));
printf("%d %d\n",res,ans.Val());
}
}
return 0;
}