educoder 数据挖掘算法原理与实践:k-均值

本文探讨了数据挖掘中的k-均值算法,从质心的概念出发,逐步解析如何动手实现这一经典聚类算法,带你走进数据挖掘的世界。
摘要由CSDN通过智能技术生成

第1关:什么是质心

#encoding=utf8
import numpy as np

#计算样本间距离
def distance(x, y, p=2):
    '''
    input:x(ndarray):第一个样本的坐标
          y(ndarray):第二个样本的坐标
          p(int):等于1时为曼哈顿距离,等于2时为欧氏距离
    output:distance(float):x到y的距离      
    '''
    #********* Begin *********#    
    dis2 = np.sum(np.abs(x-y)**p)
    dis = np.power(dis2,1/p)
    return dis
    #********* End *********#
#计算质心
def cal_Cmass(data):
    '''
    input:data(ndarray):数据样本
    output:mass(ndarray):数据样本质心
    '''
    #********* Begin *********#
    Cmass = np.mean(data,axis=0)
    #********* End *********#
    return Cmass
#计算每个样本到质心的距离,并按照从小到大的顺序排列
def sorted_list(data,Cmass):
    '''
    input:data(ndarray):数据样本
          Cmass(ndarray):数据样本质心
    output:dis_list(list):排好序的样本到质心距离
    '''
    #********* Begin *********#
    dis_list = []
    for i in range(len(data)):
        dis_list
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值