UVa4080 Warfare And Logistics

5 篇文章 0 订阅
1 篇文章 0 订阅

题目描述 传送门


尝试删 m 条边重新计算n个点的最短路时间复杂度 O(nm2logn)
但对于点 i 只有删除了以i为源点的最短路树上的边才需要重新计算。
预处理好每个点的最短路树,这样最多计算 O(n2) 次单源最短路,时间复杂度降为 O(n2mlogn)
坑点:要用第二小的边代替删去的边。


代码

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<queue>
#include<cstring>
using namespace std;
const int INF=1e9;
const int maxn=104,maxm=1005;
int h[maxn],d[maxn],sum[maxn],p[maxn],secedge[maxn][maxn],edgeid[maxn][maxn];
bool vis[maxn],need[maxn][maxm*2];
struct Edge{
    int t,d,nxt;
    Edge(int a=0,int b=0,int c=0):t(a),d(b),nxt(c){}
}edges[maxm*2];
int n,m,cnt,L;
struct heap{
    int d,v;
    heap(int a=0,int b=0):d(a),v(b){}
    bool operator<(const heap&a)const{
        return d>a.d;
    }
};
void addedge(int from,int to,int dist){
    edges[++cnt]=Edge(to,dist,h[from]);
    h[from]=cnt;
    edges[++cnt]=Edge(from,dist,h[to]);
    h[to]=cnt;
    edgeid[from][to]=edgeid[to][from]=cnt;
}
int main(){
    while(scanf("%d%d%d",&n,&m,&L)!=EOF){
        cnt=-1;
        memset(h,-1,sizeof(h));
        memset(secedge,0,sizeof(secedge));
        for(int i=0;i<m;i++){
            int a,b,c;
            scanf("%d%d%d",&a,&b,&c);
            if(!secedge[a][b]){
                addedge(a,b,c);
                secedge[a][b]=secedge[b][a]=INF;
            }
            else if(c<edges[edgeid[a][b]].d){
                secedge[a][b]=secedge[b][a]=edges[edgeid[a][b]].d;
                edges[edgeid[a][b]].d=edges[edgeid[a][b]^1].d=c;
            }
            else if(c<secedge[a][b]) secedge[a][b]=secedge[b][a]=c;
        }
        memset(sum,0,sizeof(sum));
        memset(need,0,sizeof(need));        
        int c=0;
        for(int i=1;i<=n;i++){
            memset(vis,0,sizeof(vis));
            priority_queue<heap>q;
            q.push(heap(0,i));
            for(int i=1;i<=n;i++) d[i]=INF;
            d[i]=0;
            while(!q.empty()){
                heap x=q.top();q.pop();
                int u=x.v;  
                if(vis[u]) continue;
                vis[u]=1;
                for(int i=h[u];i>-1;i=edges[i].nxt){
                    int v=edges[i].t;
                    if(d[u]+edges[i].d<d[v]){
                        d[v]=d[u]+edges[i].d;
                        p[v]=i;
                        q.push(heap(d[v],v));
                    }
                }
            }
            for(int j=1;j<=n;j++){
                sum[i]+=d[j]==INF?L:d[j];
                if(j!=i) need[i][p[j]]=need[i][p[j]^1]=1;
            }
            c+=sum[i];
        }
        int ans=0;
        for(int i=0;i<2*m;i+=2){
            int c1=0;
            for(int j=1;j<=n;j++){
                if(need[j][i]){
                    swap(secedge[edges[i].t][edges[i^1].t],edges[i].d);
                    edges[i^1].d=edges[i].d;
                    memset(vis,0,sizeof(vis));
                    priority_queue<heap>q;
                    q.push(heap(0,j));
                    for(int i=1;i<=n;i++) d[i]=INF;
                    d[j]=0;
                    while(!q.empty()){
                        heap x=q.top();q.pop();
                        int u=x.v;
                        if(vis[u]) continue;
                        vis[u]=1;
                        for(int i=h[u];i>-1;i=edges[i].nxt){
                            int v=edges[i].t;
                            if(d[u]+edges[i].d<d[v]){
                                d[v]=d[u]+edges[i].d;
                                q.push(heap(d[v],v));
                            }
                        }
                    }
                    for(int k=1;k<=n;k++)
                        c1+=d[k]==INF?L:d[k];
                    swap(secedge[edges[i].t][edges[i^1].t],edges[i].d);
                    edges[i^1].d=edges[i].d;
                }
                else c1+=sum[j];
            }
            ans=max(ans,c1);
        }
        printf("%d %d\n",c,ans);
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值