Orange3数据转换(数据采样组件)

组件介绍:

固定数据比例(Fixed proportion of data) 返回整个数据的选定百分比

固定样本量(Fixed sample size)  返回选定数量的数据实例,并可以设置 Sample with replacement(替换样本),该替换样本始终从整个数据集中进行采样(不减去子集中已有的实例)。 通过替换,您可以生成比输入数据集中更多的实例。

交叉验证(Cross validation) 将数据实例划分为指定数量的互补子集。交叉验证是一种评估机器学习模型性能的常用方法,其作用是通过将数据集分为几个互斥的子集(称作“fold”),然后对模型进行多次训练和测试,以评估其泛化能力。

自助采样(Bootstrap) 是一种常用的数据采样类型,它的作用在于用于建立稳健性较强的机器学习模型。

Bootstrap是一种有放回的重新采样方法,它会从原始数据集中随机采集一定量的样本,重复地采样多次,从而得到一组新的采样数据集。

这些新的采样数据集与原始数据集具有相同的大小,但由于采集方式不同,它们的样本和特征分布可能会有所不同,有助于减小因数据分布不均而导致的误差。

具体而言,使用Bootstrap方法可以补偿数据集样本数量不足,增加样本量;对于样本分布不平衡的情况,

可以采用Bootstrap来提高少数类别样本数

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值