基于协同过滤算法的旅游景点推荐系统
摘要
本研究将采用协同过滤算法来设计一个旅游景点推荐系统,旨在帮助用户更准确、更高效地发现符合其个性需求的旅游景点推荐。本系统将采用协同过滤算法和大数据技术,通过Python等编程工具对旅游数据进行处理和分析。具体方法包括数据爬取、清洗和预处理、特征提取、模型训练和评估等步骤。同时,结合用户行为数据和用户偏好分析,构建推荐算法,并通过实验验证算法的有效性。
基于协同过滤算法的旅游景点推荐系统的设计与实现的主要使用者分为管理员和普通用户,实现功能包括管理员:系统用户、景点分类管理、景点信息管理、评分分数管理、景点评分管理、景点数据管理、系统管理、公告管理、资源管理模块,普通用户:首页、公告、旅游资讯、景点信息、景点数据、我的账户、个人中心等功能。由于本网站的功能模块设计比较全面,所以使得整个旅游景点推荐系统信息管理的过程得以实现。
基于协同过滤算法的旅游景点推荐系统是以Django这一框架为基础,采用Python的编程语言,使用了MySQL这一数据库进行开发的,可以实现本旅游景点推荐系统管理的信息化,让用户更加直接的了解各景点的推荐信息,也方便管理员进行更加方便快捷的旅游景点推荐管理。
关键词:旅游景点推荐系统;协同过滤算法;Django;大屏数据
This study will use collaborative filtering algorithms to design a tourist attraction recommendation system, aiming to help users discover tourist attraction recommendations that meet their individual needs more accurately and efficiently. This system will use collaborative filtering algorithms and big data technology to process and analyze job search data through programming tools such as Python. The specific methods include data crawling, cleaning and preprocessing, feature extraction, model training and evaluation, and other steps. At the same time, combining user behavior data and user preference analysis, a recommendation algorithm is constructed, and the effectiveness of the algorithm is verified through experiments.
The main users of the design and implementation of a tourism attraction recommendation system based on collaborative filtering algorithm are divided into administrators and ordinary users. The implementation functions include administrator: system user, attraction classification management, attraction information management, rating score management, attraction rating management, attraction data management, system management, announcement management, resource management module, ordinary users: homepage, announcement, tourism information, attraction information, attraction data, my account, personal center, and other functions. Due to the comprehensive design of the functional modules on this website, the entire process of information management in the tourist attraction recommendation system can be achieved.
The tourist attraction recommendation system based on collaborative filtering algorithm is based on the Django framework, developed using Python programming language and MySQL database. It can realize the informatization of the management of this tourist attraction recommendation system, allowing users to directly understand the recommendation information of various attractions and facilitating administrators to carry out more convenient and efficient tourist attraction recommendation management.
Keywords: Tourist attraction recommendation system; Collaborative filtering algorithm; Django; Large screen data
目录
随着互联网的普及和移动设备的普及,人们越来越依赖互联网获取信息和做出决策。旅游行业作为一个重要的服务行业,也在逐渐向数字化、智能化方向发展。随着旅游景点的数量不断增加,游客在选择旅游目的地时面临着信息过载的问题。因此,设计一款能够根据用户的喜好和偏好推荐旅游景点的系统变得尤为重要。
协同过滤算法是一种常用的推荐算法,它通过分析用户的历史行为数据,找出和当前用户兴趣相近的其他用户或物品,给用户推荐可能感兴趣的物品。在旅游景点推荐系统中,协同过滤算法可以通过分析用户的旅游记录、评论、评分等数据,为用户推荐适合其口味的景点,提高用户的旅游体验。
另外,协同过滤算法具有一定的推荐准确性和可扩展性,因此在构建旅游景点推荐系统时,采用协同过滤算法能够更好地解决用户喜好多样化、个性化的需求,为用户提供更加个性化的旅游推荐服务。
基于协同过滤算法的旅游景点推荐系统具有重要的研究意义和实际应用价值。首先,该系统可以帮助用户快速准确地找到符合自己兴趣的旅游景点,节省用户的选择时间,提高用户的满意度和体验。其次,通过分析用户的个性化需求和行为,推荐系统可以为旅游景点提供更有针对性的推广和营销服务,提升景点的曝光度和吸引力。此外,基于协同过滤算法的旅游景点推荐系统还可以为旅游从业者提供有益的数据支持和决策参考,帮助他们更好地了解用户需求、改进景点服务质量,提升旅游产业的发展水平。
综上所述,研究和设计一款基于协同过滤算法的旅游景点推荐系统,不仅符合当前数字化、智能化发展趋势,也能够为旅游行业的发展和用户体验提供有力支持和推动。
旅游业是世界各国重要的经济支柱之一,而旅游景点的选择对于旅游者来说至关重要。传统的旅游推荐方式主要依靠专业导游或旅行社提供的指导,但这种方式存在信息不够全面、个性化程度较低等问题。随着互联网的发展和旅游信息的广泛传播,基于协同过滤算法的旅游景点推荐系统逐渐兴起,成为研究的热点。
目前,国内外已经有一些关于旅游景点推荐系统的研究。例如,德国的CampusExplorer系统利用用户的历史游览记录以及用户之间的相似度来推荐适合的景点。该系统采用了基于内容的过滤算法和协同过滤算法,并且考虑了景点的地理位置信息。
此外,阿根廷的Handy-Tourism系统也是一种基于协同过滤算法的旅游景点推荐系统。该系统利用用户历史游览记录和用户评分来计算用户的兴趣相似度,进而为用户推荐感兴趣的景点。
国内方面,北京大学提出了一种基于用户行为和景点特征的旅游景点推荐方法。该方法首先利用用户历史游览记录和用户评分计算用户的兴趣相似度,然后根据用户的兴趣和包括景点特征、地理位置等因素进行推荐。
总结来看,国内外的研究主要集中在基于用户行为、用户评分和景点特征等因素的景点推荐。然而,目前研究中还存在一些问题,例如,如何更准确地计算用户的兴趣相似度以及如何考虑用户对不同景点的偏好程度等。因此,本论文将以此为基础,进一步研究和改进基于协同过滤算法的旅游景点推荐系统,提高用户的旅游体验。
本研究旨在探索基于协同过滤算法的旅游景点推荐系统,并对其进行优化改进,以提升推荐的准确性和用户满意度。
(1)收集旅游景点相关数据,包括用户评价数据、用户行为数据和景点属性数据;
(2)基于协同过滤算法,构建用户-景点评分矩阵,并利用该矩阵进行用户兴趣分组和推荐;
(3)分析旅游景点的特点和用户行为模式,对协同过滤算法进行改进和优化;
(4)设计和开发一个基于协同过滤算法的旅游景点推荐系统原型,测试系统的推荐准确性和用户满意度;
(5)对系统进行优化和调整,提升推荐算法的性能和效果。
论文将分层次经行编排,除去论文摘要致谢文献参考部分,正文部分还会对网站需求做出分析,以及阐述大体的设计和实现的功能,最后罗列部分测试记录,论文主要架构如下:
第一章:绪论。主要介绍了选题的背景意义以及本文的主要研究内容和章节安排。
第二章:相关技术介绍。主要对本系统使用的相关技术和开发环境进行介绍。
第三章:系统需求分析。主要从系统的用户、功能等方面进行需求分析。
第四章:系统概要设计。主要对系统框架、系统功能模块、数据库进行功能设计。
第五章:系统实现。主要介绍了系统框架搭建、系统界面的实现。
第六章:系统测试。主要对系统的部分界面进行测试并对主要功能进行测试。
第七章:结论。
- 2 章 相关理论和技术
协同过滤算法是推荐算法中比较经典常用的一种,它主要包括基于内存的协同过滤和基于模型的协同过滤两种算法。前者主要根据用户的历史数据进行相关的推荐,它使用领域的方法又可以分为基于用户的协同过滤算法和基于项目的协同过滤算法。
协同过滤推荐(Collaborative Filtering recommendation)是在信息过滤和信息系统中正迅速成为一项很受欢迎的技术。与传统的基于内容过滤直接分析内容进行推荐不同,协同过滤分析用户兴趣,在用户群中找到指定用户的相似(兴趣)用户,综合这些相似用户对某一信息的评价,形成系统对该指定用户对此信息的喜好程度预测。
与传统文本过滤相比,协同过滤有下列优点:
(1)能够过滤难以进行机器自动基于内容分析的信息。如艺术品、音乐;
(2)能够基于一些复杂的,难以表达的概念(信息质量、品位)进行过滤;
(3)推荐的新颖性。
B/S结构(Browser/Server,浏览器/服务器模式),是WEB兴起后的一种网络结构模式,WEB浏览器是客户端最主要的应用软件。这种模式统一了客户端,将系统功能实现的核心部分集中到服务器上,简化了系统的开发、维护和使用。客户机上只要安装一个浏览器,如Chrome、Safari、Microsoft Edge、Netscape Navigator或Internet Explorer,服务器安装SQL Server、Oracle、MySQL等数据库。浏览器通过Web Server同数据库进行数据交互。
在 B/S 模式中,用户是通过浏览器针对许多分布于网络上的服务器进行请求访问的,浏览器的请求通过服务器进行处理,并将处理结果以及相应的信息返回给浏览器,其他的数据加工、请求全部都是由Web Server完成的。通过该框架结构以及植入于操作系统内部的浏览器,该结构已经成为了当今软件应用的主流结构模式。
爬虫,即网络爬虫,是通过递归访问网络资源,抓取网络中信息的技术。
网络为搜索引擎从万维网下载网页。一般分为传统爬虫和聚焦爬虫。
传统爬虫从一个或若干初始网页的URL开始,获得初始网页上的URL,在抓取网页的过程中,不断从当前页面上抽取新的URL放入队列,直到满足系统的一定停止条件。通俗的讲,也就是通过源码解析来获得想要的内容。
聚焦爬虫的工作流程较为复杂,需要根据一定的网页分析算法过滤与主题无关的链接,保留有用的链接并将其放入等待抓取的URL队列。然后,它将根据一定的搜索策略从队列中选择下一步要抓取的网页URL,并重复上述过程,直到达到系统的某一条件时停止。另外,所有被爬虫抓取的网页将会被系统存贮,进行一定的分析、过滤,并建立索引,以便之后的查询和检索;对于聚焦爬虫来说,这一过程所得到的分析结果还可能对以后的抓取过程给出反馈和指导。
Django是高水准的Python编程语言驱动的一个开源模型.视图,控制器风格的Web应用程序框架,它起源于开源社区。使用这种架构,程序员可以方便、快捷地创建高品质、易维护、数据库驱动的应用程序。这也正是OpenStack的Horizon组件采用这种架构进行设计的主要原因。另外,在Django框架中,还包含许多功能强大的第三方插件,使得Django具有较强的可扩展性。Django 项目源自一个在线新闻 Web 站点,于 2005 年以开源的形式被释放出来。
Django已经成为web开发者的首选框架,是一个遵循 MVC 设计模式的框架。MVC是Model、View、Controller三个单词的简写,分别代表模型、视图、控制器。Django其实也是一个MTV 的设计模式。MTV是Model、Template、View三个单词的简写,分别代表模型、模版、视图。但是在Django中,控制器接受用户输入的部分由框架自行处理,所以 Django 里更关注的是模型(Model)、模板(Template)和视图(Views),称为 MTV模式。
MySQL 经过多次的更新,功能层面已经非常的丰富和完善了,从MySQL4版本到5版本进行了比较大的更新,在商业的实际使用中取得了很好的实际应用效果。最新版本的MySQLl支持对信息的压缩,同时还能进行加密能更好的满足对信息安全性的需求。同时经过系统的多次更新,数据库自身的镜像功能也得到了很大的增强,运行的流畅度和易用性方面有了不小的进步,驱动的使用和创建也更加的高效快捷。最大的变动还是进行了空间信息的显示优化,能更加方便的在应用地图上进行坐标的标注和运算。强大的备份功能也保证了用户使用的过程会更加安心,同时支持的Office特性还支持用户的自行安装和使用。在信息的显示形式上也进行了不小的更新,增加了两个非常使用的显示区,一个是信息区,对表格和文字进行了分类处理,界面的显示更加清爽和具体。第二是仪表的信息控件,能在仪表信息区进行信息的显示,同时还能进行多个信息的比对,为用户的实际使用带来了很大的便捷。
协同过滤算法是一种有效的推荐算法,可以根据用户的历史行为和偏好向用户推荐符合其口味的景点推荐服务。本文结合大数据和协同过滤算法,可以实现对用户个性化需求的精准旅游景点推荐,提升用户体验。我们选择使用Python作为开发语言,结合相应的库和框架,如Django和Pandas,以实现系统的功能需求。Python作为一种简洁而强大的编程语言,具有丰富的库支持和成熟的开发社区,可以满足旅游景点推荐系统的开发需求。Django作为Python的Web框架,提供了高度可扩展的开发环境,使得系统的设计和实现更加便捷和高效。
首先,建立旅游景点推荐系统可以提高用户的旅游体验,推荐系统能够提升用户满意度和忠诚度,增加用户的再次访问频率,从而促进系统的经济效益。其次,投入建立推荐系统的成本相对较低,收益回报较快,具有较高的经济效益。在开发旅游景点推荐系统并不需要投入太多,开发工具、服务器、数据库等,都可以通过网络搜索、下载、安装,只需要一台普通的计算机就可以完成操作,因此系统的开发在经济方面是可行的。
操作方面主要考虑的是用户在使用以及管理人员在管理的时候,是否简单可行,没有任何计算机基础的用户能否使用,开发的景点在线销售系统在设计的时候秉承简单易学的理念,在用户进入系统后都会有固定的导航按钮,只要认字就可以操作完成,而且管理员在管理方面也只需简单的增删改查即可完成,因此在操作上也是可行的。
系统在功能上划分为普通用户端和管理员端两部分。
普通用户端:
(1)注册登录:当用户想要对系统中所实现的功能进行查询管理的时候,就必须进行登录到系统当中,如果没有账号的话,可以在登录窗口中进行注册,然后再通过账号密码登录。
(2)公告:用户点击“公告”以后,系统当中所有的公告都会展示出来,如果想要了解某一公告的详细信息,点击后面的“详情”会进入详情界面。
(3)旅游资讯:用户点击“旅游资讯”可以搜索查看资讯信息,并可对资讯信息进行点赞、收藏和发表评论等操作。
(4)景点信息:点击菜单栏“景点信息”就会显示出所有的景点信息,可以根据搜索景点名称查看景点详细信息,包括景点名称、景点类型、景点门票、景点评分、景点地址、推荐指数、游玩时长、开放时间、景点设施、景点简介、景点详情等,可对景点信息进行景点评分、点赞、收藏和评论等操作。
(5)景点数据:点击菜单栏“景点数据”就会显示出所有的景点数据,可以查看景点数据详细信息,包括景点名称、攻略数量评分、简介、排名、经度、纬度、点评数量、多少驴友来过、详情链接、地址、概述、开放时间等,可对景点数据进行点赞、收藏和评论等操作。
(6)我的账户:用户点击右上角的“用户名”进入到我的账户便可对自己的昵称、密码和头像进行更改操作。
(7)个人中心:用户点击右上角的“用户名”,然后点击“个人中心”便可对景点评分和个人收藏信息进行管理。
后台管理员端:
(1)个人资料:对个人的基本信息以及对自己账号登录的密码进行修改;
(2)系统用户:在系统用户管理模块中主要分了两部分,分别是管理员和普通用户,如果需要添加新的用户,点击页面中的“添加”按钮根据提示输入上用户信息,点击“提交”以后在对应的用户界面就可以查看到了,可以点击用户后面的“删除”按钮直接删除某一用户。
(3)景点分类管理:管理员可对景点信息进行分类添加。
(4)景点信息管理:点击“景点信息列表”这个按钮可以查看到系统中所有发布的景点信息,管理员可进行详情、查看评论或删除等相应操作。
(5)评分分数管理:管理员点击“评分分数管理”系统会把旅游景点推荐系统当中用户提交的所有评分分数信息都显示出来,可以对评分分数信息进行查询、重置或删除。
(6)景点评分管理:管理员点击“景点评分管理”系统会把旅游景点推荐系统当中所有的景点评分信息都显示出来,可以对景点评分信息进行查询、重置或删除。
(7)景点数据管理:点击“景点数据列表”这个按钮可以查看到系统中所有的景点数据信息,管理员可进行查询、重置或删除等相应操作。如果需要添加新的景点数据信息,管理员可以在后台首先数据爬取整合景点数据,然后下载导入文档另存为文件。按照文档上面的格式添加数据,最后点击导入按钮导入数据,生成最新景点数据信息。
(8)系统管理:点击“轮播图管理”这个按钮可以查看到系统中所有的轮播图信息,如果想要添加新的轮播图信息,点击“添加”按钮然后根据提示输入轮播图信息,点击“提交”后,在轮播图管理界面就会显示新增的轮播图信息,可以点击某一轮播图信息查看轮播图信息的详情,也可以直接点击“删除”进行删除轮播图。
(9)公告管理:管理员点击“公告”以后,系统当中所有的公告都会展示出来,可以通过关键词查询公告,也可以添加新的公告或者删除某一条公告。
(10)资源管理:管理员在“资源管理”页面可对旅游资讯以及资讯分类进行增删改查等操作。
旅游景点推荐系统的非功能性需求比如旅游景点推荐系统的安全性怎么样,可靠性怎么样,性能怎么样,可拓展性怎么样等。具体可以表示在如下3-1表格中:
表3-1 旅游景点推荐系统非功能需求表
安全性 |
主要指旅游景点推荐系统数据库的安装,数据库的使用和密码的设定必须合乎规范。 |
可靠性 |
可靠性是指旅游景点推荐系统能够安装用户的指示进行操作,经过测试,可靠性90%以上。 |
性能 |
性能是影响旅游景点推荐系统占据市场的必要条件,所以性能最好要佳才好。 |
可扩展性 |
比如数据库预留多个属性,比如接口的使用等确保了系统的非功能性需求。 |
易用性 |
用户只要跟着旅游景点推荐系统的页面展示内容进行操作,就可以了。 |
可维护性 |
旅游景点推荐系统开发的可维护性是非常重要的,经过测试,可维护性没有问题 |
旅游景点推荐系统中普通用户角色用例图如图3-1所示:
图3-1 普通用户角色用例图
旅游景点推荐系统中管理员角色用例图如图3-2所示:
图3-2管理员角色用例图
管理员权限下的工作流程主要为:管理员通过系统界面提供登录按钮并点击,转入管理员登录界面,并在界面上填入相应的管理员账户和管理员密码,进入管理员权限下的后台系统,并且在系统左侧导航条设置了相应的操作功能。
用户权限下的工作流程主要为:用户通过系统提供的注册功能,进行身份验证并注册,而后在登录界面进行个人身份验证,并且进入用户的个人后台界面,并进行相应的操作。
开发基于协同过滤算法的旅游景点推荐系统的设计与实现系统最主要的一个目的就是实现用户在线浏览景点信息的便捷,系统的业务流程图如下所示。
图3-3系统业务流程图
在分析了项目开发的背景、意义以及其开发的可行性后,接下来就是探讨项目的功能划分,以及具体实现的时候对项目数据库各种表的设计,在本章会做一个系统的介绍。
-
- 系统总体架构设计
系统功能模块的设计就是把系统具体要实现哪些功能,功能如何划分做一个系统的架构,以模块图的方式展示出来,方便我们进行功能得罗列以及涉及。在系统的功能方面,项目分成了管理员+用户两个模块,每个模块登录进去对应相应的功能,具体的功能模块图如图4-1所示。
图4-1 旅游景点推荐系统功能模块图
一个成熟的系统,数据库的好坏直接影响着其运行,如果没有一个好的数据库对数据存储,那么系统中所有的数据就没有办法调用,数据库是由很多个表组成,然后表和表之间相互联系,形成一个大大的数据库实体。
下面是整个旅游景点推荐系统中主要的数据库表总E-R实体关系图。
图4-2旅游景点推荐系统总E-R关系图
通过前面E-R关系图可以看到项目需要创建很多个表。下面罗列一下本旅游景点推荐系统当中的几个主要的数据库表:
表access_token (登陆访问时长)
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
token_id |
int |
10 |
0 |
N |
Y |
临时访问牌ID |
|
2 |
token |
varchar |
64 |
0 |
Y |
N |
临时访问牌 |
|
3 |
info |
text |
65535 |
0 |
Y |
N |
||
4 |
maxage |
int |
10 |
0 |
N |
N |
2 |
最大寿命:默认2小时 |
5 |
create_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
创建时间: |
6 |
update_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
更新时间: |
7 |
user_id |
int |
10 |
0 |
N |
N |
0 |
用户编号: |
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
article_id |
mediumint |
8 |
0 |
N |
Y |
文章id:[0,8388607] |
|
2 |
title |
varchar |
125 |
0 |
N |
Y |
标题:[0,125]用于文章和html的title标签中 |
|
3 |
type |
varchar |
64 |
0 |
N |
N |
0 |
文章分类:[0,1000]用来搜索指定类型的文章 |
4 |
hits |
int |
10 |
0 |
N |
N |
0 |
点击数:[0,1000000000]访问这篇文章的人次 |
5 |
praise_len |
int |
10 |
0 |
N |
N |
0 |
点赞数 |
6 |
create_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
创建时间: |
7 |
update_time |
timestamp |
19 |
0 |
N |
N |
CURRENT_TIMESTAMP |
更新时间: |
8 |
source |
varchar |
255 |
0 |
Y |
N |
来源:[0,255]文章的出处 |
|
9 |
url |
varchar |
255 |
0 |
Y |
N |
来源地址:[0,255]用于跳转到发布该文章的网站 |
|
10 |
tag |
varchar |
255 |
0 |
Y |
N |
标签:[0,255]用于标注文章所属相关内容,多个标签用空格隔开 |
|
11 |
content |
longtext |
2147483647 |
0 |
Y |
N |
正文:文章的主体内容 |
|
12 |
img |
varchar |
255 |
0 |
Y |
N |
封面图 |
|
13 |
description |
text |
65535 |
0 |
Y |
N |
文章描述 |
编号 |
名称 |
数据类型 |
长度 |
小数位 |
允许空值 |
主键 |
默认值 |
说明 |
1 |
type_id |
smallint |
5 |
0 |
N |
Y |
分类ID:[0,10000] |
|
2 |
display |
smallint |
5 |
0 |
N |
N |
100 |
显示顺序:[0,1000]决定分类显示的先后顺序 |
3 |
name |
varchar |
16 |
0 |
N |
N |
分类名称:[2,16] |
|
4 |
father_id |
smallint |
5 |
0 |
N |